

A Model-driven development framework for highly Parallel and EneRgy-Efficient computation supporting multi-criteria optimisation

Model-Driven Engineering Use Cases: Automotive

AMPERE Final Event Webinar

Michael Pressler — Robert Bosch GmbH

27 June 2023

The Context

Hundreds of ECUs regulate everything, e.g., battery charge, fuel supply, climate control,... Higher level (ADAS) functions leverage data from lowerlevel functions

Vehicle/Domain computers integrate functions developed by different supplierers on the same System-on-Chip. Funtionality that **must operate correctly** in response to its inputs from both **functional** and **non-functional perspectives**

> Model-Driven Engineering based on **Domain Specific Modeling Languages** (DSML)

Bosch: Intelligent Predictive Cruise Control

- Three different application classes with different execution semantics
 - ACC (Adaptive Cruise Control) & Powertrain Control
 - PCC (Predictive Cruise Control)
 - TSR (Traffic Sign Recognition)

18

Gluing it all together: Publish-Subscribe Middleware

Powertrain Control

- Autosar Classic Semantics
 - Periodic tasks, sequentially executing
 - Runnables, communicating on a fine grain level via variables in shared memory (a.k.a. labels)
 - WATERS Challenges <u>2016</u> & <u>2017</u>
 - Executed on CPU
 - ASIL B

10		10	0-50		51-1	00		0-500		501-1			-100
	Period 1 m		1 ms	2 ms	5 ms	10 ms	20 ms	50 ms	100 ms	200 ms	1000 ms	sync	
						I	I		I			I	
	2 m	8				I	Ι		Ι				
	5 m	8		I	IV		п	п	I				
	10 r	ns	п	п	п	VI		п		п	ш		
	20 r	ns	I	I	I			П		I	П		
	50 r	ns			п	П	П	ш	I				
	100	ms		I	I			п	VI	Ш	ш		
	200	ms				I	Ι		Ι	Ι	I		
	100	0 ms				ш	п		ш	I		I	
	Ang sym	de-	I	I	I			I	ш	I	I	v	

III IV V

Inter task communication

Amalthea Element	#
Tasks	~21
Runnables	~1250
Labels	~10000

19

Adaptive Cruise Control (ACC)

- Autosar Classic Semantics
 - Periodic tasks with data driven activation (sampling + pipelining)
 - Runnables, communicating on a fine grain level via variables in shared memory (a.k.a. labels)
 - Potential offloading of some functions to FPGA and GPU

Amalthea Element	#
Tasks	~5
Runnables	~100 (w/o base SW)
Labels	~500

Traffic Sign Recognition (TSR)

- Video processing & machine learning workloads
 - Data-driven activation
 - Executed on CPU with offloading of GPU

Data Size: ~110kb

adar objects User presets Actual speed Electronic horizon Front Video Signa User speed set point Traffic Sign Adaptive Cruise Control Predictive Cruise Control (PCC) Recognized (ACC) Recognition (TSR) PCC speed speed limit torque demana set point Traffic sign Powertrain Control Operation (to dashboard) stratea Existing CPS New CPS to be integrated

Amalthea Element	#
Tasks	3 + x (classification)
Runnables	7 + 3 * x
Labels	4 + x

Com P:5ms

E:1ms-2ms

Predictive Cruise Control (PCC)

- Cyclic calculation (500 ms) of "electric horizon" for efficient driving mode
 - Based on map data and planned route (navigation system)

Radar objects User pre	sets Actual speed Liser speed	Electronic horizon		Front Video Signal
Adaptive Cruise Contro (ACC) torque de	emand set point	Predictive Cruise Control (PCC)	Recognized speed limit	Traffic Sign Recognition (TSR)
Existing CPS	Operation strategy	New C	PS to be inte	(to dashboard)

Evaluation: Xilinx Ultra-Scale+

23

Evaluation NVIDIA Jetson AGX

Thank you!

www.ampere-euproject.eu

The AMPERE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871669

