
Final Event – AMPERE Project Webinar

27 June 2023 - HIPEAC

The AMPERE project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 871669

Technology behind the AMPERE SW framework:

Sara Royuela, Barcelona Supercomputing Center (BSC)

HPC programming models for predictable parallel performance
Run-time support: Resiliency

Programming multi-cores

2

HardwareApplications

Design Coding Analysis Execution

High-performance and non-functional requirements
(time predictability, resilience and energy)

fulfilled at all stages of the development process

Parallel programming models

1. Mandatory for SW productivity in terms of
 Programmability: Abstractions to describe parallelism while hiding HW complexities
 Portability: Compatibility with multiple Software Development Kits (SDKs) and Hardware (HW) platforms
 Performance: Efficiently exploit parallel capabilities of HW

2. Efficient offloading to HW acceleration devices for an energy-efficient parallel execution

Open parallelism

fork

join

main

Close parallelism

Parallel programming with OpenMP tasks

3

 API based on compiler directives, runtime
routines and environment variables

 For shared-memory system + accelerators
 Build on top of C/C++ and FORTRAN

void main() {
int x,y;
f1(&x,&y);
f2(x);
f3(y);

}

Sequential version

Executes on the host

Executes on the accelerator

void main() {
#pragma omp parallel
#pragma omp single
{

int x,y;
#pragma omp task depend(out:x,y)
{ f1(&x,&y); }
#pragma omp task depend(in:x)
{ f2(x); }
#pragma omp target map(to:y) depend(in:y)
{ f3(y); }

}
} // Implicit barrier

OpenMP version

f3
f1

f2
Task Dependency Graph

(TDG)

Support for non-functional requirements in AMPERE

4

Performance

Resilience

Time predictability

Energy

Multi-criteria
optimization

Model-to-code
transformation

AMPERE ecosystem workflow

5

Meta PPM
abstraction

Code Synthesis
OpenMP source
code generation

APP4MC

System description:
• Components/comms.
• Functional/NFP

ODAS PCC

Capella

Amalthea

Capella to
Amalthea bridge

Model
Meta MDE
abstraction

TDG
generation

Off-line multi-criteria
optimization based
on the TDG:
• Performance
• Heterogeneity
• Time-predictability
• Energy efficiency
• Resiliency Extrae

AMPerf
PAPI Carmel

Compiler
Correctness +

TDG generation

LLVM DART

TDG augmentation

Parallel code
(OpenMP, CUDA

graph, FRED tasks)

Xillinx Zynq
ZCU102

NVIDIA
Jetson AGX Perf

Runtime:
• Performance
• Heterogeneity
• Time-predictability
• Energy efficiency
• Resiliency

OS+Hypervisor

ERIKA

Linux
PikeOS

CUDA
FRED

KMP

Execution profile

Opportunities for parallelism with AMALTHEA

6

Model-to-code transformation for performance

7

#pragma omp parallel
#pragma omp single
#pragma omp taskgraph
{

#pragma omp task depend(out: Image)
read_and_convert();
#pragma omp task depend(in: Image) \

depend(out: ResultsA)
analysisA();
#pragma omp target depend(in: Image)) \

depend(out: ResultsB) \
map(to: Image) \
map(from: ResultsB)

analysisB();
#pragma omp task depend(in: ResultsA, \

ResultsB)
merge_results();

}

AMALTHEA MODEL OPENMP CODE

The OpenMP Taskgraph framework

8

TDG: Representation of the parallel nature of an OpenMP task-based region
 Includes all the information for functional and non-funcional correctness
 Parallel units and synchronization dependencies
 Characterization of the execution of parallel units (e.g., time, energy, memory accesses)

Enables performance optimizations
 Parallel orchestration fully driven by the runtime based on the TDG:
 Avoid context switching
 Reduce the number of instructions

 Avoid contention on shared resources (e.g., task ready queues)

 Reduce the overhead of the runtime:
 Task creation (tasks can be preallocated or reused across TDG executions)
 Dependencies resolution is no longer needed

Enables static analysis techniques
 Correctness of the parallelization (e.g., race free)

 Timing analysis for predictable execution

Taskgraph: A Low Contention OpenMP Tasking Framework. C. Yu, S. Royuela, E. Quiñones. Transactions of Parallel and Distributed Systems (TPDS). 2023.

Performance evaluation on the PCC use case (CPU)

AMALTHEA
tasks

Tasks w. inter-
runnable parallelism Granularity

ACC 6 6 ~104 μs

ECM 22 22 ~101 μs

PCC 3 2 ~101 μs

TSR 8 1 ~101-102 μs

9

0,5

1

1,5

2

2,5

2 4 6 8

Pe
rf

or
m

an
ce

 sp
ee

du
p

w
.r.

t.
se

qu
en

ta
l

Number of threads
perception word_model
preprocessing control_behaviour

Performance speedup
parallelizing the ACC component

with 2 to 8 OpenMP threads

Performance evaluation on the PCC use case (GPU)

10

Performance speedup parallelizing the ACC component
with 2 to 8 OpenMP threadsand sending TSR to the GPU

0

0,5

1

1,5

2

2 4 6 8

Pe
rf

or
m

an
ce

 sp
ee

du
p

w
.r.

t.
al

l-C
PU

Number of threads

perception word_model
preprocessing control_behaviour

0

1

2

3

4

5

2 4 6 8

Pe
rf

or
m

an
ce

 sp
ee

du
p

w
.r.

t.
al

l-C
PU

Number of threads

gaussian_filter detection resizing
segmentation_tsr classification

TSR ACC

Resilience through software replication

 Replication based on ASIL/SIL

 Parametrization:
 In the clause:

 Number of replicas
 Variable:function tuple used to

check the results
 Type of replication: spatial,

temporal or spatial_temporal
defines the type of replication.

 At compilation time:
 MooN safety architecture

11

Generated code:

TDG (spatial replication):

Resilience through proactive monitoring

 General and lightweight software
technique for proactive monitoring
based on the observer design pattern.

 Main features:
 Early detection of transient software

faults, to avoid silent errors that may
lead to system malfunctioning

 Critical internal variables can be
monitored by external code in a
minimally coupled fashion

 Correctness-checking mechanisms can
use predicates implemented as
external functions

12

Replication evaluation

13

OverheadAccuracy

 3 phases, i.e., predict, association, and
update, included in the track phase

 Different data-sets, i.e., scattered,
crowded, and inflated

The AMPERE project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 871669

	Technology behind the AMPERE SW framework:
	Programming multi-cores
	Parallel programming with OpenMP tasks
	Support for non-functional requirements in AMPERE
	AMPERE ecosystem workflow
	Opportunities for parallelism with AMALTHEA
	Model-to-code transformation for performance
	The OpenMP Taskgraph framework
	Performance evaluation on the PCC use case (CPU)
	Performance evaluation on the PCC use case (GPU)
	Resilience through software replication
	Resilience through proactive monitoring
	Replication evaluation
	Número de diapositiva 14

