AMPERE™"

A Model-driven development framework for highly Parallel and
EneRgy-Efficient computation supporting multi-criteria optimisation

Technology behind the AMPERE SW framework:

HPC programming models for predictable parallel performance
Run-time support: Resiliency

Sara Royuela, Barcelona Supercomputing Center (BSC)

Final Event - AMPERE Project Webinar
27 June 2023 - HIPEAC

Programming multi-cores

Applications

Traffic Sign Recognition

High-performance and non-functional requirements
(time predictability, resilience and energy)
fulfilled at all stages of the development process

Design Coding Analysis Execution

Parallel programming models

1. Mandatory for SW productivity in terms of
. Programmability: Abstractions to describe parallelism while hiding
. Portability: Compatibility with multiple Software Development Kits (
. Performance: Efficiently exploit parallel capabilities of HW

2. Efficient offloading to HW acceleration devices for an energy-efficient parallel execution

Multi-core
processors

Massively Deep
parallel learning
processors processors)

Parallel programming with OpenMP tasks

Sequential version

q:.

void main () {

= API based on compiler directives, runtime
routines and environment variables

* For shared-memory system + accelerators
= Build on top of C/C++ and FORTRAN

int x,vy;
f1l1(&x,&y);
Open parallelism £2 (%) ; } Executes on the host
................................ . f3 (y) : } Executes on the Gcce/erator
v) }
fork
OpenMP version
maln! : void main () {
E !fl O #pragma omp parallel
f2| % £3 #pragma omp single
jOﬁ)E’ int x,y;
A) #pragma omp task depend(out:x,y) O
{ fl(&x,&y) 7 }
#pragma omp task depend(in:x) @)
{ f2(x); }
#pragma omp target map(to:y) depend(in:y) @©Q
{ £3(y): }
Close parallelism }

@ // Implicit barrier

Task Dependency Graph
(TDG)

[
Support for non-functional requirements in AMPERE q‘. =
.

p
II Performance = J
odel-to-code
~~ OpenMP
n - transformation
388 Resilience
N\ J
/ N

AMPERE ecosystem workflow

e, e . TDG augmentation

...............................

- -

System description: (

 Components/comms. i[Capella
* Functional/NFP !

Capellato
Amalthea bridge

[———

Meta MDE Meta PPM
abstraction abstraction

O

Code Syithesis

Compiler

Xillinx Zynq OpenMP source Correctness +
ZCuU102 code generation TDG generation Parallel code
il LLVM]'[D ART] (OpenMP, CUDA
APPAMC [graph, FRED tasks)

NVIDIA
Jetson AGX

Execution profile

q &
Off-line multi-criteria
optimization based
on the TDG:

e Performance

* Heterogeneity

* Time-predictability
* Energy efficiency

* Resiliency [Extrae

* AMPerf
“ PAPI Carmel
FRED
CUDA KMP
Runtime:

* Performance
* Heterogeneity

ﬁ * Time-predictability
* Energy efficiency

* Resiliency

OS+Hypervisor

Opportunities for parallelism with AMALTHEA

v & AMALTHEA model (version 2.1.0)
v % Software
~ (I Runnables (5)
» © read_image
» © convert_image
» = analysisA
» @ analysisB
» @ merge_results
~ (3 Labels (3)
» = Image
» = ResultsA
» = ResultsB
~ (@ Tasks (1)
~ @ PeriodicTask
~ *i5 Activity Graph
4z call read_image
4z call convert_image
5 call analysisA
5 call analysisB
\ 5 call merge results P

Model-to-code transformation for performance I

AMALTHEA MODEL

L J
APPAMC

~ < AMALTHEA model (version 2.1.0)
~ [16 Software
~ [JRunnables (4)
~ @ read_and_convert
~ *L, Activity Graph
Z read Image
£ write ResultsA
» @ analysisA
b @ analysisB
b @ merge_results l » [# analysisB.variantType <— de\.rice_omp]\\
~ BLabels (3) +z call merge_results \\\
» = Image ~
b = ResultsA
» = ResultsB

~ [@Tasks (1)
~ @ PeriodicTask
~ *L, Activity Graph
[» o "Parallel" -> (Boolean) true]'
2 call read_and_convert
» ¥z call analysisA

- ¥z call analysisB

» D Local Labels
~ *i Activity Graph

v L <> Switch

~ I case: "host_omp"

condition: OR
& read Image
22, Ticks
& write ResultsA

-

condition: OR
£ read Image
[E2, Ticks

b & write ResultsA

»
»
»
~ I case:"device_omp"
3
»
»

OPENMP CODE

QpenMP}

#pragma omp parallel
#pragma omp single

« @ analysisA Ss

{

#pragma omp task depend(out: Image)

read and convert();

#pragma omp task depend(in: Image) \
depend (out: Resultsa)

analysisA() ;

#pragma omp target depend(in: Image)) \

~al depend (out: ResultsB) \

map (to: Image) \

map (from: ResultsB)

analysisB() ;

#pragma omp task depend(in: ResultsaA, \
ResultsB)

merge results();

The OpenMP Taskgraph framework | o
COMPILER INFRASTRUCTURE S

#pragma omp parallel . .

oregme om single TDG: Representation of the parallel nature of an OpenMP task-based region

pragma omp taskgrapl

! fpragma omp task depend(out: Image) = |ncludes all the information for functional and non-funcional correctness
o b o hpend(in: mage) \ = Parallel units and synchronization dependencies

nalysion; TEodlouws: Resuwitsd) = Characterization of the execution of parallel units (e.g., time, energy, memory accesses)

O #pragma omp target depend(in: Image)) \
depend(cut: ResultsB) \

map (to: Tmage) \ Enables performance optimizations
map (from: ResultsB)
analysisB(); _ = Parallel orchestration fully driven by the runtime based on the TDG:
#pragma omp task depend(in: ResultshA, \
ResultsB) = Avoid context switching

merge results();

} = Reduce the number of instructions
= Avoid contention on shared resources (e.g., task ready queues)

= Reduce the overhead of the runtime:
= Task creation (tasks can be preallocated or reused across TDG executions)
= Dependencies resolution is no longer needed

Enables static analysis techniques
= Correctness of the parallelization (e.g., race free)

= Timing analysis for predictable execution

. Taskgraph: A Low Contention OpenMP Tasking Framework. C. Yu, S. Royuela, E. Quifiones. Transactions of Parallel and Distributed Systems (TPDS). 2023. 8

Performance evaluation on the PCC use case (CPU)

Radar User Electronic Front video
obj‘ects ;arefets hor:'zon ngrﬂ-'
: : User spf'ed 'd : A
Adaptive Cruise Control set point |, Predictive Cruise Control
(ACC) ¢ (PCC) Recognized (TSR)
PCC speed | M speed limit
Torque set point
demand Traffic sign
Powertrain Control - (to dashboard)
QOperation
' strategy \.
Existing CPS New CPS to be integrated
AMALTHEA Tasks w. inter- .
. Granularity
tasks runnable parallelism
ACC 6 6 ~10% ps
ECM 22 22 ~10! ps
PCC 3 2 ~10* s
TSR 8 1 ~101-102 us

I g: &
Performance speedup

parallelizing the ACC component
with 2 to 8 OpenMP threads

s

w.r.t. sequental
‘I—\
(0]

Performance speedup

o
&

Number of threads

—e—perception
=8—preprocessing

—e—word_model
control_behaviour

s
Performance evaluation on the PCC use case (GPU) il q‘P =

Performance speedup parallelizing the ACC component
with 2 to 8 OpenMP threadsand sending TSR to the GPU

TSR ACC
5
a
> a 2
o _ 4 S
QD o]
xS o
o < 3 L2 15
O T 2] Ll)
5 5 8%
+ @
£ 3 G o 1 —0
o) E =
4 1 S = l
0 L — b9 v &
2 4 6 8 0
Number of threads 2 4 6 8
. . . . Number of threads
—e—gaussian_filter —e—detection —e—resizing
—e—segmentation_tsr —e—classification —e—perception —e—word model

=@-preprocessing =0-control_behaviour 10

Resilience through software replication 447 \‘. =
= Replication based on ASIL/SIL Generated code:
int consolidation_function(int* a_original, int* a_replicated) {
m ParamEtrization: . return (*a_original == xa_replicated);
= Inthe clause: void foo (void) {
. Number of replicas ?pra?ma omp task replicated(3, (a:consolidation))

= Variable:function tuple used to
check the results

= Type of replication: spatial, G (spatial replication):

temporal or spatial_temporal
defines the type of replication.

1 @ Original task

% @ Replicated tasks

‘ @ Data capturing .
‘ Synchronization task
O consolidation tasks

= At compilation time:

= MooN safety architecture

@ 1

1] Lo
Resilience through proactive monitoring 447 gd.o

= General and lightweight software
technique for proactive monitoring

based on the observer design pattern. | mputdata

= Main features: (Obsewid p—m— , \
= Early detection of transient software i P ;f)l:j;‘;‘c’fr ’
faults, to avoid silent errors that may - state variable >+ predicate |
lead to system malfunctioning - T / e)
= Critical internal variables can be | Outputdata | yes
monitored by external code in a T | , no
minimally coupled fashion Main program i 1 alarm

= Correctness-checking mechanisms can
use predicates implemented as
external functions

12

Replication evaluation

detected errors (%)

120

100

80

60

40

20

g

Lidar

Camera

Radar

GPUs

Heterogeneous platform
(CPU+GPU+FPGA)

"

Predict

N
Pr Units 1 of
: : N Sensor X Collision
Pre-pr Units Data Tracking checker
Fusion
)
Accuracy
- ¥ ¥

Association Update Track

Replicated phase

[replicas [l observer [replicastobserver

overhead (%)

-

3 phases, i.e., predict, association, and
update, included in the track phase

Different data-sets, i.e., scattered,
crowded, and inflated

120%

100%

80%

60%

40%

20%
0%

observer

Overhead

observer_on [observer_off

il -
predict associate update track
phase

13

TDG augmentation

DG
generation

p—) (G

Performance

Resilience

Off-line multi-criteria

optimization based
onthe TDG:

+ Performance

* Heterogeneity

« Time-predictability
« Energy efficiency

* Resiliency Extrae
AMPerf

‘; PAPI Carmel

Runtime:

@

Tillinx Z/ng
U [28NTRVAS
—

Time predictability

Energy

—
=4
(0]

Multi-criteria
optimization

AMPERE"

A Model-driven development framework for highly Parallel and
EneRgy-Efficient computation supporting multi-criteria optimisation

n programme under grant agreement No

received funding from the European Uni

on’s Horizon 2020
871669

	Technology behind the AMPERE SW framework:
	Programming multi-cores
	Parallel programming with OpenMP tasks
	Support for non-functional requirements in AMPERE
	AMPERE ecosystem workflow
	Opportunities for parallelism with AMALTHEA
	Model-to-code transformation for performance
	The OpenMP Taskgraph framework
	Performance evaluation on the PCC use case (CPU)
	Performance evaluation on the PCC use case (GPU)
	Resilience through software replication
	Resilience through proactive monitoring
	Replication evaluation
	Número de diapositiva 14

