When cyber-physical systems meet HPC:Dr. Sara RoyuelaProductivity and dependability through OpenMPWHPC ISC22

Cyber-Physical System

1

When cyber-physical systems meet HPC:Dr. Sara RoyuelaProductivity and dependability through OpenMPWHPC ISC22

Dr. Sara Royuela

WHPC ISC22

The TDG to match user needs with machine capabilities

Dr. Sara Royuela

WHPC ISC22

Optimizations built on top of the TDG

✓ Memory bounding (heuristic based on TDG).

✓ Task data preallocation + lazy task creation.

Dr. Sara Royuela

WHPC ISC22

Optimizations built on top of the TDG

- ✓ Memory bounding (heuristic based on TDG).
- Task data preallocation + lazy task creation.

Safety:

- ✓ Correctness analysis (race conditions, datasharing/dependencies consistency,...).
- ✓ Timing/schedulability analysis.
- ✓ *Replication towards fault-tolerance.*

Dr. Sara Royuela

WHPC ISC22

Optimizations built on top of the TDG

 \checkmark

 \checkmark

Memory:

- Memory bounding (heuristic based on TDG).
- \checkmark Task data preallocation + lazy task creation.

Safety:

- Correctness analysis (race conditions, datasharing/dependencies consistency,...).
- ✓ Timing/schedulability analysis.
- ✓ Replication towards fault-tolerance.

Performance:

Define-once-run-repeatedly execution model.

- *Scheduling* optimizations (e.g., data affinity, critical path, fixed/static scheduling).
 - \rightarrow Data affinity, critical path,...
- Iteroperability / Heterogenenity (FPGA/GPU):
 - \rightarrow OpenMP TDG to CUDA graphs (GPU).
 - \rightarrow OpenMP TDG to FRED/DART (FPGA).

Dr. Sara Royuela

WHPC ISC22

Optimizations built on top of the TDG

Memory:

- Memory bounding (heuristic based on TDG).
- \checkmark Task data preallocation + lazy task creation.

Safety:

- Correctness analysis (race conditions, datasharing/dependencies consistency,...).
- ✓ Timing/schedulability analysis.
- Replication towards fault-tolerance.

A Model-driven development framework for highly Parallel and EneRgy-Efficient computation supporting multi-criteria optimisation

 \checkmark

 \checkmark

→ OpenMP

Performance:

Define-once-run-repeatedly execution model.

- *Scheduling* optimizations (e.g., data affinity, critical path, fixed/static scheduling).
 - → Data affinity, critical path,...
- Iteroperability / Heterogenenity (FPGA/GPU):
 - \rightarrow OpenMP TDG to CUDA graphs (GPU).
 - → OpenMP TDG to FRED/DART (FPGA).

This work has received funding from the European Union-s Horizon 2020 research and innovation programme under grant agreement No **871669** and the Marie Sklodowska-Curie grant agreement No **873120**.