

Barcelona Supercomputing Center entro Nacional de Supercomputaciór

Sara Royuela¹, Chenle Yu¹, Adrian Munera¹, Eduardo Quiñones¹, Dirk Ziegenbein², Franck Wartel³

Context

- > Multi-cores and heterogeneous platforms are essential to provide complex critical systems from the automotive, space and railway markets with **cost-effective** and **power-efficient** parallel capabilities.
- > The critical embedded market (CEM) presents several challenges regarding safety certification, causing tedious and expensive Verification & Validation (V&V) processes.
- > Although high-level parallel programming models (PPM) are very effective at leveraging the performance of heterogeneous and parallel processor architectures, they lack features to ensure the

Objectives

- RESPECT will develop a complete software framework, **Dependable Parallel Environment (DePE)**, to facilitate the development of advanced critical software for parallel and heterogeneous computers by holistically addressing dependability and high-performance.
- 1. Provide enhanced PPM and tools to ease parallelization while abstracting the complexities of the underlying architecture.
- 2. Develop off-line / on-line mechanisms to minimize the impact of parallel execution in terms of overhead and contention.
- 3. Develop off-line / on-line mechanisms to enhance reliability and **safety** while exploiting the parallel resources of the system.

dependability of the system in terms of **functional correctness**, **real**time constraints, safety and reliability.

4. Provide a correct-by-construction framework that allows the analyzability of the system in terms of real-time / dependability requirements and functional correctness.

Solution

Relevant benchmarks

> On-board Processing Benchmarks (OBPMark)

Spacecraft applications for image and radar processing, data and image compression, signal processing and machine learning.

- > Darmstadt Automotive Parallel Heterogeneous **Benchmark-Suite (DAPHNE)**

Automotive applications from the Autoware project for the evaluation of heterogeneous, parallel programming models.

- > The taskgraph framework
 - ✓ Represent a region of code as a Task Dependency Graph (TDG)

EVM

- ✓ Avoid the execution of user code to orchestrate tasks
- ✓ Avoid dependency resolution and task instantiation
- Enable timing analysis based on Direct Acyclic Graphs (DAG)
- Expose interoperability with CUDA graphs
- > Task-level replication
 - ✓ Temporal and spatial
 - ✓ Safety architecture

Transfer of technology

Contributions

Timeline and Tasks

Phase 1	System modelling
	System model description
	Board selection and set up
	Safety requirements
	Use case preparation
Phase 2	DePE technology
	PPM
	LLVM adaptations
	Evaluation
Phases 1 and 2	Management
	Dissemination
	Exploitation
	Roadmap certification

Preliminary results

- > Task-level parallel replication
 - ✓ Application: Obstacle Detection and Avoidance System (from THALES)
 - ✓ Replication design: Phases: predict, association, update, and track Datasets: (1) scattered, (2) crowded, (3) inflated
- Fine grained predictable parallelism >

ဖွ 1936-

ā_{,1600}.

- ✓ Applications: NAS parallel benchmarks, heat propagation, gravity force, axpy, dot-product, Cholesky factorization, object detector based on histogram of gradients
- ✓ Parallelization approaches: Tasks/Taskloops and For loops

- ✓ Hardware: NVIDIA Jetson Xavier AGX
- ✓ Fault model: 1 bit flip per run in a relevant variable of a replicated task

✓ Hardware: 24x dual-socket Intel Xeon Platinum

Taskgraph: A Low Contention OpenMP Tasking Framework. C. Yu, et al. arXiv:2212.04771

Project funded by the AGAUR Indústria del Coneixement – Producte 2021 program from Generalitat de Catalunya (Spain) under record number 2021 PROD 00179

