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D2.1 Model Transformation Requirements 

1. Executive Summary 
This deliverable covers the work done during the first phase of the project within WP2. The 
deliverable spans 7 months’ work (including 1 extra month with respect of the Grant Agreement 
(European Comission and AMPERE beneficiaries, 2019) due to the COVID19 situation), and 
handles the work done in Task 2.1 “Model transformation requirements specification” to reach 
milestone 1 (MS1). Concretely, the deliverable covers the activities conducted within WP2 
towards the implementation of a code synthesis component capable of generating the optimized 
parallel code based on the requirements specified in the DSML and the information gathered by 
the tools for multi-criterion analysis. For this purpose, Task 2.2 will define the meta parallel 
programming model interface gathering the information exposed in the meta model driven 
abstraction and the results of the analysis of the multi-criterion optimization layer. The meta 
parallel programming model will be then transformed to the underlying high-level parallel 
programming models (PPMs) supported by the processor architecture selected in Task 5.1 
(AMPERE, 2020). 

The target at MS1 is: (1) the definition of the code synthesis tool for an efficient model 
transformation and parallel programming model support to express functional and non-
functional constraints, and (2) identification of current state-of-the-art synthesis tools. The first 
milestone of Task 2.1 has been carried out successfully, and all objectives of MS1 have been 
reached and documented in this deliverable.  

2. Introduction 
WP2 aims to develop a meta parallel programming abstraction independent of the underlying 
processor architecture, capable of capturing all system functional and non-functional 
requirements, as well as incorporating the parallel semantics required to enable and efficient 
model transformation, optimized for performance, timing, resiliency, cyber-security and energy-
efficiency. With such a purpose in mind, Section 3 introduces the general requirements of the 
model driven engineering tools, Section 4 introduces the requirements of the parallel 
programming models, and Section 5 discusses the compatibility between the domain specific 
modelling languages (DSML) and the parallel programming models (PPM). 

The relation of this deliverable with other WP is shown in Table 1, considering deliverables and 
tasks that are involved with the study performed in this deliverable. 

Table 1. Relationship between D2.1 and other WPs. 

Deliverable Leader Task Description 

D1.1 THALIT T1.1 System models requirements specification and use case 
selection 

D3.1 ISEP T3.1 Multi-criteria optimization requirements specification 

D4.1 SSSA T4.1 Runtime requirement specification 

D5.1 SYSGO T5.1 Reference parallel heterogeneous hardware selection 
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3. Model driven engineering overview 
Model Driven Engineering (MDE) is a structured development paradigm focused on models as 
central artifacts to describe CPS requirements, capture the overall CPS architecture (including 
HW and SW elements if needed), and specify functional behavior and interfaces. MDE methods 
provide the capability to reason about the properties and relationships between the components 
of the system while abstracting their complexities. Particularly, MDE presents the following 
benefits: 

• MDE allows defining components with clear interfaces facilitating the integration of new 
features by means of composability, i.e., the non-functional requirements fulfilled when 
developing new components in isolation is maintained at system integration. 

• MDE enables the use of code synthesis methods and tools that transform the system 
model description into source code to be compiled and executed in the target platform. 
These tools entail a correct-by-construction paradigm in which consistency between the 
transformed code and the system models can be ensured. 

• MDE enables the development of domain specific modelling languages (DSML) that 
facilitate the description of the cyber physical interactions characteristics from each 
domain. 

For these reasons, MDE is a methodology suitable to build complex systems with conflicting 
properties such as high dependability, high performance and competitive cost. Examples of such 
systems are those used in the automotive and the railway industries, as the use cases proposed 
in the AMPERE project (AMPERE, 2020). 

Unfortunately, current MDE synthesis tools, like AUTOSAR used in the automotive domain, 
transform DSMLs into a sequence of concurrent code suitable only for single-core execution. 
Other tools like Simulink Coder provide a limited support for parallelism, allowing for multi-core 
execution of models but without exploiting the possible parallelism inside the model subsystems. 

This section briefly introduces the three state-of-the-art DSML considered in the AMPERE 
project, focusing on those relevant aspects of the DSML execution model that can impact on the 
parallel execution of the system. See Deliverable D1.1 (AMPERE, 2020) for a complete 
description of the DSMLs addressed by the AMPERE project. 

3.1. AMALTHEA and AUTOSAR 
AMALTHEA and AUTOSAR are two different state-of-the-art standards for distributed model-
based development in the automotive industry. A general description of the models and the 
analysis of the opportunities for exploiting parallelism in the model are detailed next. 

3.1.1. General Description 

AMALTHEA (BOSCH, 2020) is an open source tool platform for engineering embedded multi- and 
many-core software systems proven in the automotive sector by Bosch and their partners. The 
development of the AMALTHEA data model and the platform is part of the Eclipse APP4MC 
project (Eclipse Foundation, Inc, 2020). AMALTHEA offers certain compatibility with AUTOSAR 
(Fürst, y otros, 2009).  

AUTOSAR (AUTomotive Open System ARchitecture) is an alliance of key industrial players in the 
automotive industry, establishing a de-facto open industry standard for the development and 
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execution of automotive software architecture. The standard defines two main platforms: the 
Classic Platform for embedded systems with hard real-time and safety-critical constraints, and 
the Adaptive Platform for fail-safe high-performance computing ECUs for use cases such as 
autonomous driving. 

AMLTHEA includes two different models at the top level: the system model, and the trace model. 
The former is used for designing and modeling, while the latter is used for testing and providing 
feed-back to the system model. WP2 aims to focus on the system model because it is the one 
that includes the information about the parallel nature of the system and the functional and non-
functional requirements of system components. Concretely, The AMALTHEA system model is 
composed by a series of data models that allow defining: (1) the units of (concurrent) work and 
the functionalities implemented in the system (in terms of execution time, memory access, etc.), 
(2) the elements of the hardware platform (e.g., processors, memories, etc), and (3) the mapping 
between the software and the hardware elements (i.e., schedulers, work mapping, etc.). The 
most relevant data models for the model transformation, together with their components and 
functionalities, are introduced next: 

a. Software model. Among others, it defines: 

o Task (process): The unit of concurrency at the operating system (OS) level scheduler 
composed of a sequence of functionalities (runnables) that run sequentially. It is 
defined by a priority, a preemption model, a deadline, a multiple time activation 
(MTA) and a call tree (or activity graph). 

o Runnable (function): An atomic functionality not visible by the OS scheduler. It is 
defined by the number of cycles it takes to execute and the access it does to variables 
(e.g., labels, frequency, etc.) 

b. Stimuli model: defines the activation of tasks using a set of attributes like the type of 
activation (e.g., periodic, sporadic, etc.), the offset and the recurrence. 

c. Constraints model. Among others, it defines: 

o Runnable sequencing constraints: define the sequential ordering among runnables 
based on, for example, data exchange. 

o Event chains: relate stimuli to events, and allows defining sequences, parallel paths 
and combinations of both. 

o Timing constraints: define restrictions for the execution of the events like repetition 
and delay. 

These three models allow defining the components relevant to determine the units of 
concurrency and the relationships between these units, as well as several non-functional 
requirements of the system regarding performance and time-predictability. Moreover, 
AMALTHEA includes two complementary models related to the underlying platform that are 
particularly interesting for WP2, which are: 

a. Hardware model. Among others, it defines: 

o Processing units: number and features like frequency, scratchpad, flash, etc. 
o Memory: available units, latency, etc. 
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b. OS model. Among others, it defines the scheduler with attributes like the algorithm, and the 
delay of context switch, among others. 

AUTOSAR provides similar abstractions to those supported by AMALTHEA system model. In fact, 
the design of AMALTHEA has been highly inspired in AUTOSAR. From a software model 
perspective, an AUTOSAR application is composed of a set of runnables that communicate with 
each other, and AUTOSAR tasks, which agglomerate runnables with the same release period and 
are the unit of scheduling of the AUTOSAR run-time environment (RTE), as depicted in Figure 1.  

 
Figure 1. Content of AUTOSAR Configuration Descriptions (Sailer, 2014). 

For a constraints model perspective, the execution order of runnables is constraint by two kinds 
of precedences: (1) simple precedence and (2) extended precedence, which result from the 
communication among runnables with the same or different release period, respectively. As a 
result, simple precedences only exist within tasks, while extended precedences only exist among 
tasks.  

AUTOSAR provides rich communication method, described by a virtual function bus (VFB) and 
software-component (SW-C) model. Two communication mechanisms for the exchange of a 
single data element between runnables are defined: inter-runnable-variable (IRV) and sender-
receiver (SR) communication, used between runnables from the same or from different SW-Cs, 
respectively. The run-time environment (RTE) guarantees data consistency for both mechanisms. 
The developer can define two modes: by default, communication is explicit, i.e. a precedence is 
imposed from producer to consumer, defining a strict order of execution, and the consumer uses 
the most recent value of the producer; optionally, communication can be defined as implicit, in 
which data is distributed to all consumers after the producer execution has finished. On the 
consumer side data is buffered and calculations are performed on a copy. As a result, concurrent 
execution of runnables is possible, because data are buffered and delivered with a delay. This is a 
form of asynchronous communication. AMALTHEA also allows expressing sender-receiver 
communication. Although the model is much more limited in this case, the dynamic execution 
model allowed by AUTOSER is similar to AMALTHEA. 

AUTOSAR also provides support for the specification of the timing behavior of applications 
through the AUTOSAR Timing Extensions (TIMEX) (Peraldi-Frati, Blom, Karlsson, & Kuntz, 2012). 
This is used in the AUTOSAR Classic Platform to associate timing requirements and specifications 
(e.g., worst-case response time of an end-to-end service chain) to (1) functional blocks of the 
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specification during the early-stage specification phases, and (2) the intermediate elements of 
the function networks obtained during the functional decomposition. For example, TIMEX allows 
for the specification of worst-case execution times and worst-case transmission times for 
communications. 

Unfortunately, regarding the possibility to run components on parallel and multi-core platforms, 
AUTOSAR and AMALTHEA lack a detailed model because they have tackled the execution 
semantics from an OS point of view. The complexity of modern automotive systems increases 
the importance of this inadequacy. 

3.1.2. Parallelism exposed 

 AMALTHEA and AUTOSAR define three execution scopes in which parallelism can be potentially 
exploited with different granularity levels: 

1. Among tasks: this is the only option currently available to exploit through the OS 
scheduler. In case of AMALTHEA, it provides a set of synchronization mechanisms among 
tasks to ensure the correct order of execution.  

2. Among runnables: this option is currently not supported because the model forces 
runnables to execute sequentially within a task. This limitation in AMALTHEA is a legacy 
aspect of the model, inherited from AUTOSAR. To accomplish concurrency among 
runnables, they must be enclosed in different tasks. It is worth mentioning that Bosch 
has proposed to create dedicated tasks only to transfer data from/to the GPU and 
execute GPU kernels concurrently from the rest (Wurst, y otros, 2019). 

3. Inside runnables: this option is transparent to the AMALTHEA and AUTOSAR models since 
the internals of the runnables are not exposed to the model and it is not visible to the OS 
scheduler.  

As a result of our analysis, we conclude that: (1) parallelism among tasks is a coarse-grained level 
of parallelism suitable for being exploited by the OS, as it is now; (2) parallelism among runnables 
is a fine-grained level of parallelism suitable for being exploited by the high-level parallel 
programming model in the shared-memory machine (or symmetric multi-processing, SMP); and 
(3) parallelism inside runnables is an even more fine-grained level of parallelism suitable for 
being exploited by the parallel programming model (not necessarily the same) in the SMP as well 
or in dedicated accelerators (e.g., GPU or FPGA). 

Currently, AMALTHEA only supports the three-levels of parallelism described above by wrapping 
all runnables suitable for concurrency in different tasks, using the task as the unit of parallelism. 
Then, these newly created tasks must be properly synchronized with the rest of the tasks, as well 
as be assigned to a specific scheduler to ensure the correct order of execution. This forces the 
programmer to do the additional exercise of including certain runnables to “artificial” tasks.  

3.2. CAPELLA 
Capella (Roques, 2017) is an open-source tool for model-based systems engineering developed 
by Thales. A general description of the model and an overview of the opportunities for exploiting 
parallelism in the model are detailed next. 
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3.2.1. General Description 

Capella provides SysML-inspired diagrams for graphical modelling of systems, hardware and 
software architectures. It implements the principles and recommendations defined by Arcadia 
(Voirin, 2017), the Thales standard systems engineering method. Capella is implemented on top 
of the Eclipse IDE platform, based on the PolarSys solution. 

The Arcadia method enforces an approach structured on different engineering perspectives. 
These perspectives are clearly separated between system contexts and need modeling 
(operational need analysis and system need analysis) and solution modeling (logical and physical 
architectures). The perspective dedicated to the need understanding help the system engineer to 
define what the users of the system need to accomplish and what the system has to accomplish 
for the users. The perspectives for the solution architectural design show how the system will 
work in order to fulfil its expectations and how the system will be developed and built. The 
perspective of interest for the AMPERE project is the physical architecture, at the lowest level of 
abstraction, which describes the finalized solution, with enough details to provide unambiguous 
contracts towards downstream engineering teams. 

The Capella workbench can be enhanced or specialized for a given business need, according to 
the concept of viewpoint. In the context of the AMPERE project, the relevant viewpoint is Tideal, 
which allows system architects to capture the performances properties and requirements of 
complex real-time embedded systems.  

The Tideal viewpoint extends diagrams used in the physical architecture perspective (Physical 
Architecture Blank diagrams and End-To-End Flow Scenario diagrams). It adds new concepts such 
as Timing Design Scope that allows to select all the elements that need to be analyzed and 
schedulers (see Figure 2) and End-To-End Flow timing constraints (see Figure 3). It also extends 
existing Capella elements such as Physical Component, Physical Functions and Executions to 
define their role in the real-time system and their timing properties. 

 
Figure 2. Physical Architecture Blank diagram extension 
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Figure 3. End-to-End Flow diagram extension 

 

Since the aim of the AMPERE project is to guarantee by construction that the resulting system 
fulfils its functional and non-functional requirements, the design models should allow for analysis 
and verification. However, Capella does not propose behavioral semantics, even within the 
Tideal extension. The Time4Sys1 open-source platform bridges the semantic gaps between 
existing system modelling editors and real-time analysis tools. It implements model 
transformations in order to translate the Capella/Tideal design models into verification models 
that can be taken as inputs by verification tools. Time4Sys is not limited to a specific design 
framework or a specific tool. Instead, it provides ways to extend the import (resp. export) 
mechanisms in order to connect any existing modelling language (resp. analysis tool). 

Time4Sys implements a dedicated editor based on its own implementation of UML-MARTE meta-
model (Object Management Group, 2019). This editor is basically not used when the design 
model is directly generated from Tideal but the analysis of a problem may require a real-time 
expert to check and adapt the design model (e.g. a deadline is missed); this short trial/error loop 
could then be done directly in Time4Sys without having to edit the upstream architecture model. 

Time4Sys is composed of two building blocks, the design and the verification (or analysis) pivot 
models, as well as a set of transformation rules between them. It allows representing a synthetic 
view of the system design model that captures all elements, data and properties impacting the 
system timing behavior and required to perform timing verification (e.g. tasks mapping on 
processors, communication links, execution times, scheduling parameters, etc.). More precisely, 
the design model consists of the following elements: 

• Resources: 
o Hardware resource: a processor, with a scheduling policy, to which is allocated a 

set of tasks. 
o Software resource: a task, with a (relative) deadline. 
o Bus: a communication medium to which is allocated a set of communication 

channels.  

• Applications: 
o Execution or communication step: characterized by a best- and worst-case 

execution times and a priority. Execution steps correspond to tasks, 
communication steps correspond to communication channels. 

 
1 https://www.eclipse.org/time4sys/ 

https://www.eclipse.org/time4sys/
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o Event: the activation policy for an execution step (periodic, sporadic, burst, sliding 
window, once…) 

o Relations between (execution or communication) steps: 
 Dependency: the completion of a step on a resource can trigger the 

activation of a step on the same or on another resource. 
 Mutual exclusion: the steps involved cannot be executed concurrently 

since for instance, they need access to the same memory resource. 

Various scheduling policies are supported by Time4Sys, including: 

• First-in-First-out (FIFO): tasks are treated in the same order as they are activated. 

• Fixed priority (FPS): each task on a given processor comes with a given static priority and, 
upon completion of a task instance, the highest priority task instance in the waiting 
queue is selected for execution. 

• Preemptive FPS: a version of FPS where a lower priority task can be temporarily stopped 
to execute a newly activated instance of a higher priority task. 

• (Preemptive) RMS: FPS where tasks with shorter periods necessarily have a higher 
priority. 

• Earliest Deadline First (EDF): the task with the closest deadline is executed first. 

• Shortest job first (SJF): the shortest task instance is selected first. 

• Time-Division Multiple Access (TDMA) and Round Robin: tasks are allocated slots in a 
cyclic manner to execute (part of) their instances, one after the other. 

3.2.2. Parallelism exposed 

Capella and Time4sys define a way to express parallelism using tasks running on the same 
hardware resource. This constitutes a high level view of parallelism but currently no finer 
modeling can be done in Capella or Time4Sys. Shared memory accesses can be expressed using 
mutual exclusion. Currently, a task releases a mutex when it stops running, even if the task has 
not completed (e.g., it has been preempted by a higher priority task). This means that it has 
currently no interests for tasks running on the same hardware resource. If necessary, a richer 
model for shared memory could be developed. 

4. Parallel programming models 
This section introduces basic information about the execution model and the memory model 
supported by the parallel programming models considered for the AMPERE project and 
supported by the two parallel processor architectures selected: The NVIDIA Jetson AGX and the 
Xillinx UltraScale+ (see Deliverable D5.1 (AMPERE, 2020) for further information). 

4.1. CUDA 
CUDA (NVIDIA®, 2020) is a parallel programming model designed to naturally map the parallelism 
within an application to the massive parallelism of the stream multiprocessors (SMs) 
implemented in NVIDIA devices. The CUDA platform is accessible through CUDA-accelerated 
libraries, compiler directives (e.g., OpenACC), and extensions to industry-standard programming 
languages (e.g., C, C++). Additionally, interfaces including OpenCL and OpenGL are also 
supported. 
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A CUDA program is a serial program that calls parallel kernels, i.e., functions or full programs. 
Each kernel executes across a set of parallel threads organized in a hierarchy of grids of thread 
blocks. A thread block is a set of concurrent threads that can cooperate through synchronization 
and shared access to a memory space private to the block. A grid is a set of threads block that 
may execute in parallel with other grids. Parallelism is determined explicitly by specifying the 
dimensions of a grid and its thread blocks when launching a kernel. 

Parallel execution and thread management are automatic. All thread creation, scheduling and 
termination are handled by the underlying system, mostly directly in hardware. Per block thread 
synchronization is accomplished calling the __syncthreads() intrinsic. 

Threads may access data from multiple memory spaces: per-thread local memory, per-block 
shared memory and global memory. Global memory is managed via the cudaMalloc() and 
cudaFree() runtime calls. To support a heterogeneous system architecture combining a CPU and 
a GPU, each with its own memory system, CUDA programs must copy data between the host 
memory and the device memory. Unified memory is a component of CUDA that provides 
managed memory to bridge the host and device memory spaces by defining a memory space in 
which all processors see a single coherent memory image with a common address space. 

Listing 1 shows a simple example of a CUDA parallel program. There, the kernel matrix_mul is 
specified by means of the __global__ specifier. The threadIdx, blockIdx and blockDim are built-in 
variables that allow accessing each thread, block and block dimension respectively. 

The concurrency among kernels is managed using CUDA streams. A stream is a sequence of 
operations that execute in issue-order on the GPU. Using several streams allows the concurrent 
and synchronous or asynchronous execution of kernels. 

Newer versions of CUDA include a new paradigm, CUDA graphs, offering two main 
characteristics: (1) it allows expressing work as graphs rather than single operations, and (2) it 

Listing 1. CUDA matrix multiplication example. 

/* kernel.cu */ 

__global__ void matrix_mul(float A[N][N], float B[N][N], float C[N][N], 

int wA, int wB)  

{ 

    int col = blockIdx.x * blockDim.x + threadIdx.x; 

    int row = blockIdx.y * blockDim.y + threadIdx.y; 

 

    float th_value = 0; 

    for (int k = 0; k < wA; ++k) 

       th_value += A[row * wA + k] * B[k * wB + col]; 

 

    C[row * wA + col] = th_value; 

} 

 

/* main.c */ 

int main() 

{ 

    … 

    dim3 threadsPerBlock(16, 16); 

    dim3 numBlocks(N/threadsPerBlock.x, N/threadsPerBlock.y); 

    matrix_mul<<numBlocks, threadsPerBlock>>(A, B, C, wA, wB); 

    … 

} 



         

 12 

D2.1 Model Transformation Requirements 

enables a define-once-run-repeatedly execution flow. A graph consists of a series of operations, 
such as memory copies and kernel launches, connected by dependencies and defined separately 
from its execution. The programming interface offers  

4.2. OpenCL 
OpenCL (Khronos OpenCL working group, 2020) is an open standard for writing programs that 
execute across heterogeneous platforms including CPUs, GPUs, DSPs, FPGAs and other 
accelerators. Naturally, OpenCL pursues portability while considering programmability. 

The OpenCL architecture consists of one host (CPUD-based) that controls multiple compute 
devices (CPUs and GPUs). Each of these consists of multiple compute units (equivalent to stream 
multiprocessors in NVIDIA, and stream cores or SIMD engines in AMD) and the latter contain 
multiple processing elements, each of them executing OpenCL kernels. So, the kernel is the basic 
unit of parallelism. Kernel bodies are instantiated once per work item (equivalent to a CUDA 
thread), and each work item gets a unique global id. Work-items are wrapped in work-groups 
(equivalent to a CUDA thread block).  

OpenCL offers fine-grained data- and thread-parallelism (at the work-item level) nested within 
coarse-grained data- and task-parallelism (at the work-groups level). Synchronization in the form 
of memory fences is possible within threads in a work-group, as well as synchronization barriers 
for threads at the work-item level. Additionally, the host can use blocking API operations to wait 
for completion of certain events. 

Listing 2 shows a simple example of a OpenCL parallel program. There, the kernel matrix_mul is 
specified by means of the __global__ specifier. The threadIdx, blockIdx and blockDim are built-in 
variables that allow accessing each thread, block and block dimension respectively. 

OpenCL has an advantage over CUDA, and is that it can be executed, not only in any GPU 
including the library, but also in the host. Hence, schedulers could decide to execute a given task 
with a unique OpenCL implementation in the host based on the availability of the resources or 
the performance expected for the given device (Wen, Wang, & O'boyle, 2014). 
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4.3. OpenMP 
OpenMP (OpenMP ARB, 2018) is an API aiming at facilitating parallel programming in shared-
memory systems first, and also in heterogeneous systems based on the extensions of later 
specifications. The model allows expressing parallelism in a fork-join fashion. Parallelism is 
spawned when a parallel construct is reached, creating a team of threads, and joined when the 
implicit barrier at the end of a parallel region in found. Furthermore, parallelism can be spawned 
following two different paradigms: the thread-based model, which allows for data parallelism, 
and the task-based model, which allows for task parallelism. 

Synchronization of threads occurs when a barrier construct is found, and also based on flush 
directives. Synchronization of tasks occurs based on taskwait and taskgroup directives, and also 
on task dependencies, hence enabling a data-flow model. 

/* kernel.cl */ 

__kernel void matrix_mul(__global float A*, __global float B*, __global 

float C*, int wA, int wB)  

{ 

   int col = get_global_id(0);  

   int row = get_global_id(1); 

  

   float th_value = 0; 

   for (int k = 0; k < wA; ++k) 

      th_value += A[row * wA + k] * B[k * wB + col]; 

 

   C[row * wA + col] = th_value; 

} 

 

/* main.c */ 

int main() { 

    … 

    clGetDeviceIDs(platform_ids[0], 

       gpu ? CL_DEVICE_TYPE_GPU : CL_DEVICE_TYPE_CPU, 

       1, &device_id, NULL); 

    context = clCreateContext(0, 1, &device_id, NULL, NULL, &err); 

    commands = clCreateCommandQueue(context, device_id, 0, &err); 

    lFileSize = LoadOpenCLKernel(“kernel.cl", 

       &KernelSource, false); 

    program = clCreateProgramWithSource(context, 1, 

       (const char **) & KernelSource, NULL, &err); 

    err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); 

    kernel = clCreateKernel(program, "matrix_mul", &err); 

    … 

    err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&d_C); 

    err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&d_A); 

    err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&d_B); 

    err |= clSetKernelArg(kernel, 3, sizeof(int), (void *)&wA); 

    err |= clSetKernelArg(kernel, 4, sizeof(int), (void *)&wB); 

    err = clEnqueueNDRangeKernel(commands, kernel, 2,  

        NULL, globalWorkSize, localWorkSize, 0, NULL, NULL); 

    err = clEnqueueReadBuffer(commands, d_C, CL_TRUE, 0, 

        mem_size_C, h_C, 0, NULL, NULL); 

} 

Listing 2.OpenCL matrix multiplication example. 
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OpenMP offers a relaxed-consistency, shared-memory model that defines three different views 
of the memory: a shared space accessible to all threads called memory; a temporary view of 
memory for each thread; and a threadprivate memory, private to each thread that cannot be 
accessed by any other thread. 

The accelerator model, based on the tasking model, is an extension that pursues portability 
between devices with different ISAs, as well as programmability, by easing the burden of defining 
data movements between the host and the accelerator, and performance boosted by inserting 
accelerated parts in the applications. This is a host-centric model where a host device offloads 
computation to one or more target devices with their own local storage. 

The OpenMP accelerator model defines a thread hierarchy where OpenMP threads (equivalent 
to CUDA threads), are wrapped into teams (equivalent to CUDA thread blocks), which are in turn 
wrapped into leagues (equivalent to CUDA grids). The parallel for construct can be used to 
exploit the former, while the teams and distribute constructs are used to exploit the two latter.  

Listing 3 shows an example of the computation of a matrix multiplication using the OpenMP 
accelerator model. The user code remains the same as for a sequential version of the 
benchmark. Just additional directives are inserted so the compiler knows how to do the 
transformation to exploit that computation in the accelerator. 

4.4. OmpSs 
OmpSs (BSC Programming Models, 2019) is a task-based parallel programming model built on 
top of a set of C/C++ and Fortran language directives and a runtime API. It aims at fast-
prototyping and offers a simple yet complete set of directives and runtime options that allows 
covering both homogeneous and heterogeneous architectures without the need for changing the 
code. 

Ompss defines a thread pool based execution model, meaning that the OmpSs application 
defines a pool of threads at the beginning of the program, while the application is initially 
executed just by one of them. Then, parallelism is distributed using tasks. Compared to OpenMP, 
it offers interesting features such as richer dependency clauses or the implements construct, 
which allows defining different implementations (e.g., C, CUDA and OpenCL) for the same kernel.  

Listing 3. OpenMP accelerator model matrix multiplication example. 

/* main.c */ 

int matrix_mul(float A[N][N], float B[N][N], float C[N][N]) { 

   #pragma omp target device(0) map(to:A[0:N*N], B[0:N*N])  

                      map(from:C[0:N*N] 

   #pragma omp teams distribute parallel for private(i,j,k) 

   for (i=0; i<n; i++) 

      for (j=0; j<n; j++) 

         for (k=0; k<n; k++) 

            C[i][j] += A[i][k]*B[k][j]; 

} 

 

int main() { 

   … 

   matrix_mul(A, B, C); 

   … 

} 
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The memory model is very similar to that of OpenMP, although the rules to define the data-
sharing attributes in OmpSs are slightly different (e.g., in OmpSs, the variables appearing in the 
dependency clauses are shared by default). 

OmpSs supports heterogeneity with the target construct. The region inside includes the kernel 
to be executed, and the implementation shall match the type of device specified in the device 

clause (e.g., if the device clause receives the value cuda, then the kernel should be written in 
CUDA). This hybrid programming approach allows easily taking advantage of already existing 
CUDA/OpenCL kernels, while offering a good programmability to offload them and manage data. 

Additionally, OmpSs also has support for FPGAs (Programming Models @BSC, 2020), by using the 
fpga value in the device clause. In this case, the kernel to be offloaded to the FPGA is 
transformed using the Accelerator Integration Tool (AIT) to generate FPGA bitstream. Listing 4 
shows an example of the computation of a matrix multiplication using OmpSs and CUDA. There, 
the OmpSs model is used to define parallelism across CUDA kernels and handle the offloading, 
including data copies between the host and device memories. 

4.5. Summary: Programming models productivity 
The programming models used within the AMPERE project must facilitate the expression of the 
required levels of concurrency to exploit all hardware resources in the underlying heterogeneous 
architecture. Table 2 shows a comparison in terms of forms of parallelism and architecture 
abstraction features available in the parallel programming models just presented. Further, Table 
3 compares the models based on synchronization, mutual exclusion, language binding, error 
handling and tool support. Overall, OpenMP and OmpSs provide the most comprehensive set of 
features to support a wide range of parallelism patterns, synchronizations and architectures, on 
both the host and the device, by allowing modelling the memory hierarchy. Additionally, 
OpenMP offers two advantages over the rest of programming models. First, it defines an 

Listing 4. OmpSs+GPU matrix multiplication example. 

/* kernel.cl */ 

#pragma omp target device(cuda) ndrange(2,N,N,16,16) copy_deps 

#pragma omp task inout([N*N]C) in([N*N]A,[N*N]B) 

__global__ void matrix_mul(float A[N][N], float B[N][N], float C[N][N], 

int wA, int wB)  

{ 

    int col = blockIdx.x * blockDim.x + threadIdx.x; 

    int row = blockIdx.y * blockDim.y + threadIdx.y; 

 

    float th_value = 0; 

    for (int k = 0; k < wA; ++k) 

       th_value += A[row * wA + k] * B[k * wB + col]; 

 

    C[row * wA + col] = th_value; 

} 

 

/* main.c */ 

int main() { 

   … 

   matrix_mul(A, B, C); 

   … 

} 
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emerging error model that includes features for cancelling parallel execution, i.e., aborts an 
OpenMP region and causes executing tasks to proceed to the end of the canceled region. 
Proposals to extend this model with further extend this model with support for call-backs, and 
other resiliency mechanisms already exist (Wong, y otros, 2010). Second, it allows binding the 
computation with the data by defining a binding policy (i.e., master, to assign all threads to the 
same place2 as the master thread; close, to assign threads close to its parent; and spread, to 
create a sparse distribution of the threads of a team among the set of places of the parent’s 
place partition3) to a parallel region. 

Table 2. Comparison of the presented parallel programming models based on parallelism patterns and architecture abstraction 
(extended from (Yan, Chapman, & Wong, 2015)). 

 Parallelism Architecture abstraction 

Parallel 
Programming 

Model 

Data 
parallelism 

Asynchronous 
task 

parallelism 
Host/device 

Abstraction of 
memory 
hierarchy 

Data and 
computation 

binding 

Explicit data mapping 
host/device 

OpenMP 
parallel for  

simd 
task/taskloop 

Host and device 
(target) 

OMP_PLACES, 
teams and 
distribute 

proc_bind 
map(to|from|tofrom| 
alloc) 

OmpSs for task 
Host and device 
(target/ 
implements) 

ndrange(n, 
G1,…, Gn, 
L1,…,Ln ) 

- 
copy_in/copy_out/ 
copy_inout/copy_deps 

CUDA <<<…>>> 

Async kernel 
launch and 
memcpy, 

CUDA graphs 

Device only 
Blocks/threat 
shared 
memory 

- cudaMemcpy 

OpenCL kernel clEnqueTask Host and device 
Work-group 
and work-
item 

- bufferWrite 

 

Table 3. Comparison of the presented parallel programming models based on synchronizations, mutual exclusions, language 
binding, error handing and tool support (extended from (Yan, Chapman, & Wong, 2015)). 

 Synchronizations 

Mutual 
exclusion 

Language 
library 

Error 
handling 

Tool support Parallel 
Programming 

Model 
Barrier Reduction Join 

OpenMP barrier reduction taskwait 
Locks, critical, 
atomic, single, 
master 

C/C++ and 
Fortran based 
directives 

cancel 

OMPT 
interface/ 
Extrae (BSC 
Performance 
Tools, 2020) 

OmpSs - reduction taskwait critical, atomic 
C/C++ and 
Fortran based 
directives 

- 
Extrae (BSC 
Performance 
Tools, 2020) 

 
2 In OpenMP, a place is an unordered set of processors on a device. 
3 In OpenMP, a place partition describes the places currently available to the execution environment for a given 
parallel región. 
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CUDA _syncthreads - - atomic 
C/C++ 
extensions 

- 
NVIDIA profiling 
tools 

OpenCL 
work_group 
barrier 

work_group 
reduction 

- atomic 
C/C++ 
extensions 

exceptions 
System/vendor 
tools 

 

Nonetheless, for the exploitation of the accelerator devices, OpenMP might not provide the best 
performance compare to dedicated languages such as CUDA for NVIDIA GPUs. In these cases the 
programmability might be harmed by the difficulty of using CUDA. In this regard, there is a 
proposal (Yu, Royuela, & Quiñones, 2020) that use the OpenMP programming language to define 
workflows that can later be transformed into CUDA graphs for enhanced performance 
opportunities. In a similar line, the OmpSs programming model also runs on GPUs and FPGAs; for 
the former, it uses kernels written with OpenCL and CUDA, and for the latter it uses high-level 
OmpSs C/C++ and compiler transformations (Filgueras, y otros, 2014) for lowering the code to 
the target device. 

Overall, OpenMP is very suitable for parallelizing applications thanks to the features it includes to 
fine-tune the parallelization process, as well as its support for both host and accelerator 
execution. OpenMP offers great programmability because it is based on compiler directives that 
can incrementally be inserted in the sequential source code to achieve better performance. 
Moreover, OpenMP include a nice interoperability with CUDA, OpenCL and FPGA kernels, and 
has several mechanisms to control the runtime behavior. 

5. Preliminary analysis of DSML transformation: 
from AMALTHEA to OpenMP 

In order to make an efficient and effective use of the parallel programming models from DSMLs 
transformations, it is of paramount importance that the two representations are compatible. 
This section provides a preliminary analysis of the compatibility of OpenMP and AMALTHEA, 
from three different angles: (1) the base language, (2) the execution model and (3) the non-
functional information that both models can define. The same analysis is currently being 
conducted with CAPELLA and OpenMP. This analysis, not included in this deliverable, is following 
the same reasoning as the one presented here. 

5.1. Base Language 
In the automotive and railway domains, C and C++ are the most widely used languages. The 
Motor Industry Software Reliability Association has even developed specific guidelines, MISRA C 
(Hatton, 2007) and MISRA C++ (Motor Industry Software Reliability Association and others, 
2008), meant to promote safety best practices for automotive software, are accepted worldwide 
for developing safety-critical software in C and C++. Additionally, the AUTOSAR C++ Coding 
Guidelines (AUTOSAR, 2017) have been created by AUTOSAR to support the development of 
adaptive platform components that must complain with the stringent functional safety 
requirements of ISO 26262 (ISO, 2011) using modern C++. All considered PPM (OpenMP, OmpSs, 
CUDA and OpenCL) are built on top of C and C++. 
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5.2. Execution Model 
To illustrate the compatibility of the current capabilities of the AMALTHEA model to describe 
parallelism with OpenMP, we consider the Cholesky decomposition benchmark shown in Listing 
5. Cholesky is composed of multiple invocations to four different kernels (portf_tile, trsm_tile, 
gemm_tile, and syrk_tile) inside different loops controlling the flow, so the number of 
invocations of each kernel depends on the number loop iterations. This listing also includes the 
OpenMP directives for the parallel execution in italics, showing the data dependencies existing 
between kernels (through the depend clause) and the offloading of the portf_tile kernel to a 
GPU (through the target clause).  

Figure 4 shows the parallelism exposed by the Cholesky benchmark in the form of the Task 
Dependency Graph (TDG) extracted from the depend clauses. The orange box represents the 

cholesky and the inner nodes represent the different invocations to the kernels, i.e., portf_tile, 
trsm_tile, gemm_tile, and syrk_tile. 

 

In the AMALTHEA model, Cholesky can be described as follows: 

• The cholesky function corresponds to an AMALTHEA task. 

• The different kernel invocations inside the cholesky function correspond to different 
runnables.  Since AMALTHEA does not allow including control flow within tasks, the 
different loops have to be unrolled. 

AMALTHEA only allows describing the parallelism among tasks. Therefore, the program must 
change the system description and include the kernels invocations, i.e., the runnables, inside 
tasks, and the dependencies among the tasks shall be defined using the AMALTHEA event chains 
described in the constraints model (see Section 3.1.1). Furthermore, to offload the execution of 
portf_tile, this runnable has to be further divided into three different runnables: host-to-gpu 
copy, gpu offloading, and gpu-to-host copy (Wurst, y otros, 2019). Figure 5 shows how this 
behavior can be represented in the current AMALTHEA specification. Each kernel (runnable) has 
to be inserted inside a task to exploit parallelism, as well as the different runnables generated by 
splitting the kernel to be offloaded to the accelerator. 

void cholesky(float *A, int ts, int nt) { 

  for (k = 0; k < nt; k++) { 

 #pragma omp target map(to:A, from:A) depend(out:A[k][k]) device(GPU) 

    potrf_tile(A[k*nt+k], ts, priority + ((nt-k)+10000));  

    for (i = k + 1; i < nt; i++) 

   #pragma omp task depend(in:A[k][k]) depend(out:A[k][i])         

      trsm_tile(A[k*nt + k], A[k*nt + i], ts, priority + (nt-(i-k))+100); 

    for (i = k + 1; i < nt; i++) { 

      for (j = k + 1; j < i; j++) 

     #pragma omp task depend(in:A[k][i], A[k][j]) depend(out:A[j][i])  

        gemm_tile(A[k*nt + i], A[k*nt+j], A[j*nt+i], ts,  

                  priority + (nt-(i-k)+10)); 

   #pragma omp task depend(in:A[k][i]) depend(out:A[i][i])  

      syrk_tile(A[k*nt + i], A[i*nt + i], ts, priority + (nt-(i-k))+100); 

    } 

  } 

} 

 

Listing 5. Cholesky computation (in italics, the OpenMP directives for the parallel execution is shown). 
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Overall, the model currently defined in AMALTHEA requires using the task as an abstract 
container in order to exploit parallelism. Additionally, the offloading of tasks to accelerator 
devices is also modeled by splitting the runnable into three tasks (2 for copies and 1 for actual 
computation). These requirements of the representation forces designers to shape their system 
focusing on how the functionalities have to be parallelized, rather than what functionalities can 
be parallel.  

 

The objective of AMPERE is to incorporate model transformation techniques to automatically 
generate code capable of efficiently manage the parallel execution of AMALTHEA applications at 
different granularity levels, i.e., among runnables and within a runnable. This is indeed, a 
possible enhancement of the AMALTHEA model, allowing parallelism within tasks, and also 
between runnables of the same task. Interestingly, AMALTHEA already supports a data-model 
that allows expressing the input and output data of the runnable. In that regard, there are 
similarities between runnables and the OpenMP tasks that AMPERE aims to explore. Moreover, 
OpenMP tasks can implement CUDA kernels that are offloaded to the GPU. 

It is of paramount importance that the DSML is able to describe the execution model of the PPM. 
In that regard, the scheduling model supported by OpenMP is compatible with those supported 
by AMALTHEA or AUTOSAR. Despite AMALTHEA and AUTOSAR are agnostic of the underlying 
scheduler, it is very common the use of limited preemption schedulers due to their good 
schedulability and time predictability properties. Interestingly, OpenMP define task-based 
models with a limited preemptive execution model based on task scheduling points (TSPs), i.e., a 
point during the execution of a task region at which it can be suspended to be resumed later; or 
the point of task completion, after which the executing thread may switch to a different task 
region. Furthermore, OpenMP allows defining priority-driven schedulers to ensure that task-

potrf_tile

trsm_tile

gemm_tile

syrk_tile

Figure 4. Task Dependency graph of 
the Cholesky benchmark in Error! 

Reference source not found. . 

Figure 5. AMALTHEA model representing the 
TDG in Figure 4. 
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critically is properly handled (Serrano, Royuela, & Quiñones, Towards an OpenMP specification 
for critical real-time systems, 2018).  

Table 4 summarizes the similarities of the abstractions provided by AMALTHEA and OpenMP 
described above, with the objective of exploiting the parallel opportunities exposed by 
AMALTHEA software. 

Table 4. Matching components between the AMALTHEA and the OpenMP models.  

AMALTHEA OpenMP 

Task OpenMP program 

Runnable task construct 

Runnable offloaded to an accelerator device 
(e.g., FPGA, GPU) 

target construct 

Runnable sequencing constraints 
depend clause (associated to the task 
and target constructs) 

Preemption strategy supported: Non-
preemption, limited-preemption, fully 
preemption 

Preemption strategy supported: Non-
preemption, limited-preemption 

 

5.3. Support for functional and non-functional requirements 
OpenMP originally targets HPC systems, being its main focus to expose features for exploiting 
performance. There are however several works that push the introduction of OpenMP into other 
domains such as high performance real-time embedded systems. For such a purpose, the 
OpenMP has to be adapted to meet functional safety and time-predictability. Several features 
and techniques have been proposed targeting these aspects. Following paragraphs describe 
these proposals. 

5.3.1. Functional safety and correctness 

The functional safety of the OpenMP specification has been analyzed (Royuela, Duran, Serrano, 
Quiñones, & Martorell, 2017). This work shows that, although certain features might jeopardize 
the analyzability of the system, minimal limitations on the available features together with the 
use of two new directives for enabling full-system analysis even in the existence of third-party 
libraries, may cover most of the possible sources of non-determinism introduced by the 
specification. 

Several correctness techniques aiming at delivering fault-free OpenMP systems have been 
developed. These mainly target dead-locks and data-races. Regarding the former, there are 
techniques that apply to different programming models, like Sherlock (Eslamimehr & Palsberg, 
2014) and Chord (Naik, Park, Sen, & Gay, 2009), targeting effectiveness. More interestingly, there 
is a sound technique for detecting dead-locks in C/Phtreads programs (Kroening, Poetzl, 
Schrammel, & Wachter, 2016) that can be easily applied to OpenMP. Regarding the latter, there 
are techniques that retrieve data races in specific subsets of OpenMP, like a fixed number of 
threads (Ma, y otros, Symbolic analysis of concurrency errors in OpenMP programs, 2013), or 
using affine constructs (Basupalli, y otros, 2011). More general approaches also exist, providing 
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no false negatives (Lin, 2005), or at least providing one race when races are present (Banerjee, 
Bliss, Ma, & Petersen, 2006). 

Programmability (and productivity) has also been largely tackled in OpenMP. In this regard, 
different works consider the use of compiler-analysis techniques for relieving the user from 
defining certain information that can be automatically derived (Royuela, Duran, Liao, & Quinlan, 
2012) (Royuela S. a., 2012) (Ma, y otros, Symbolic analysis of concurrency errors in OpenMP 
programs, 2013). This works enhance not only the programmability of the model, but also the 
correctness expectations, because of two reasons: (1) they automatize certain tasks avoid 
possible human errors, and (2) they include compiler analysis techniques that can be used to 
check the correctness of the system based on the users definitions. 

Resiliency is also an aspect that has been considered in OpenMP. In order to enhance the 
reliability of the framework, different proposals for including an error model in the specification 
have been provided (Duran, y otros, 2007) (Wong, y otros, 2010). These aim at providing 
programmers with the tools for recovering the system at certain points where the parallel 
execution might fail. In this regard, the OpenMP specification includes one mechanism targeting 
resilience (and also performance), which is cancellation. Two directives allow defining points at 
which the parallel execution can be resumed and the regions to be cancelled (e.g., a parallel 
region or a taskgroup region). 

5.3.2. Time predictability 

Although OpenMP has not been designed for providing timing guarantees, previous works have 
tackled this aspect. The mainly focus on the OpenMP tasking model because the TDG resembles 
the Direct Acyclic Graph (DAG) scheduling model used in real-time systems for verifying the 
timing constraints of the tasks, and tackle both tied (Sun, Guan, Wang, He, & Yi, 2017) and untied 
tasks (Serrano, y otros, 2015). 

OpenMP lacks however the concept of time. Based on the previous works, different extensions 
to the OpenMP specification regarding tasks have been proposed (Serrano, Royuela, & Quiñones, 
Towards an OpenMP specification for critical real-time systems, 2018) in order to consider time: 

• Recurrency: in real-time systems, tasks are either periodic or sporadic triggered by an 
event. In this sense, a new clause, named event, containing the event that triggers a 

task has been proposed. 

• Deadlines: the criticality of a task can be related to the point in time at which the task has 
to be finished. Several schedulers, like earliest deadline first (EDF) and least laxity (LL), use 
this information to prioritize the tasks. A new clause, named deadline, containing the 
expression that determines the time instant at which the task must finish has been 
proposed. 

• Time management in the runtime: the control loop used in real-time systems to trigger 
tasks has to be implemented in the OpenMP runtime. An extension derived from this is 
the concept of persistent task (Pop & Cohen, 2011). 

The scheduling decisions are paramount for the time predictability of the system. In this sense, 
the use of work-conserving schedulers is paramount to avoid incorrect or too pessimistic timing 
analysis (Serrano, y otros, 2015) (Sun, Guan, Wang, He, & Yi, 2017). Work conserving policies can 
be ensured within OpenMP teams, but there is a limitation when different parallel regions can 
run in parallel: the specification states that the number of threads in an OpenMP team cannot 
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vary during the life of the parallel region to which it was associated. In this regard, there is a 
proposal that considers the cooperation between different OpenMP teams (different OpenMP 
parallel regions) in order to avoid idle cycles in threads from one team when there is work to do 
in a different team, but works at an OS-thread level and is limited but the aforementioned 
limitation. The thread pool based execution model defined by OmpSs does not have this 
limitation because the scheduler has flat access to all executing threads. 

Amalthea addresses many concepts mentioned above. Recurrency is supported via the stimuli 
model. Stimuli are responsible to activate processes, and can define different recurrency 
patterns: single, periodic, variable rate, and event related, among others. Additionally, a task can 
include several attributes to define its timing constraints and aspects related to the scheduling 
approach like a priority, a preemption strategy and a deadline. Finally, the OS model includes 
features to describe the scheduler including the particular algorithm to be used. In this regard, 
AMALTHEA recognizes several different scheduling algorithms like fixed priority (e.g., deadline 
monotonic, fixed priority preemptive, rate monotonic, etc.) and dynamic priority (e.g., earliest 
deadline first, priority based round robin, etc.) among others, and also allows user-defined 
algorithms (this information is a placeholder that needs to be implemented in the tools 
consuming the model, e.g., simulators). Schedulers can be composed in a hierarchy association, 
and tasks can be assigned to a specific scheduler. 

Capella through the Tideal viewpoint also supports a large part of these concepts. The activation 
policy of a task is modeled by an event triggering the task. The supported activation policies 
include periodic and sporadic activations, but also burst (several activations in a short time, that 
will repeat after a while) or sliding window (no more than a certain number of activations in a 
sliding time window). A task is defined by a number of timing constraints: a priority, a deadline, a 
best- and worst-case execution time. Finally, a task is allocated to a processor with a given 
scheduling policy among fixed priority, rate monotonic, earlier deadline first, first in-first out, 
round robin, etc. All these constraints can be used for schedulability analysis and simulation by 
external verification tools, thanks to the Time4Sys platform. 

5.3.3. Energy 

Power and so energy management is also an aspect that has been considered in OpenMP, and 
the importance of power management has already been noted (Chapman, y otros, 2009). There 
is a proposal for extending the OpenMP specification in order to allow addressing the issue of 
energy consumption and power management (Alessi, Thoman, Georgakoudis, Fahringer, & 
Nikolopoulos, 2015). This work provides also the compiler and runtime systems that fulfill these 
constraints. The extensions proposed include multi-objective optimization goals with a clause 
that allow providing the goals in terms of execution time, power, energy and quality of service. A 
different proposal tackles the energy consumption from a cost-per-operation point of view, and 
defines extensions to model to allow defining the accuracy of the floating point operations 
(Rahimi, Marongiu, Gupta, & Benini, 2013). 

Amalthea allows modeling the power and frequency of the system in the hardware model, but 
offers no option for defining these non-functional requirements at task level. 

Capella offers the capabilities to model some of these power consumption aspects. As of today, 
there is no tool that can be used to analyze this data and provide feedbacks to the developer. 
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6. State-of-the-art synthesis tools 
Synthesis methods are widely adopted techniques in multiple computing domains, including 
HPC, artificial intelligence and embedded computing because of the benefits they provide: (1) 
they allow non-computer experts (e.g., physicists) to effectively use diverse computing resources 
to solve complex problems while hiding low-level details of the system, and (2) they facilitate the 
verification of the system. Next we describe the state-of-the-art synthesis frameworks available 
in the mentioned domains. 

HPC 

Data Flow 
Language 
(DFL) 
(Fernández, 
Beltran, 
Mateo, 
Patejko, & 
Ayguadé, 
2014) 

DFL is a framework for the design and implementation of DSMLs 
for distributed heterogeneous HPC systems. 

It is composed of (1) a DSML that abstracts the concepts needed to 
implement efficient HPC applications, and (2) a code synthesis 
mechanism based on Lightweight Modular Staging (LMS) (Rompf & 
Odersky, 2010) that transforms the DSML into an OmpSs 
(Alejandro, y otros, 2011) program, a parallel programming model 
designed at BSC. 

The concepts included in DFL are: (1) buffers, abstracting the 
concept of data, (2) tasks and kernels, representing computations 
written in C++ and OpenCL, and (3) high-level operations, such as 
map, reduce, divide and conquer, used to exploit distributed 
systems without exposing low-level details. 

DFL features a data-flow design matching that defined by OmpSs. 
Additionally, it includes mechanisms to reuse C/C++ libraries (e.g., 
FFT (Frigo & Johnson, 1998) or VTK (Sima, 1996)) to enhance the 
productivity of the system and allow compiler use already existing 
libraries. 

Delite 
Compiler 
Framework 
and Runtime 
(Brown, y 
otros, 2011) 

Delite is an end-to-end system for building, compiling and 
executing DSL application on parallel heterogeneous hardware 
based on LMS. 

The framework (1) lifts embedded DSL applications to an 
intermediate representation (IR), (2) performs generic, parallel, 
and domain-specific optimizations, and (3) generates an execution 
graph along with multiple kernel variants that target multiple 
heterogeneous hardware devices to achieve performance 
portability. The supported languages are C++, CUDA and Scala 
(Odersky & Spoon, 2010), the latter supporting transformation to 
OpenCL (Passerat-Palmbach, Reuillon, Mazel, & Hill, 2013). 

IA 

Distributed 
Multiloop 
Language 
(DMLL) 
(Brown, y 
otros, 2016) 

DMLL is an intermediate language based on common data-parallel 
patterns that captures the necessary semantic knowledge to 
efficiently target distributed heterogeneous architecture. 

The language models high-level data-parallel patterns as 
multiloops, a loop abstraction that captures the high-level 
structure of the loop and its outputs. It also provides mechanisms 
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to efficiently distributing the computation by partitioning data. 

This language is implemented on top of the Delite framework, and 
hence reuses its heterogeneous code generators for C++, CUDA 
and Scala, and the compiler optimizations like code motion and 
common subexpression elimination. 

Halide 
compiler 
(Ragan-
Kelley, y 
otros, 2013) 

The Halide optimizing compiler synthesizes high performance 
implementations using the Halide open-source DSML for complex 
image processing pipelines and vision applications. 

The compiler lowers a functional representation of an imaging 
pipeline to imperative code. It does so by applying a series of 
transformations, including flattening, vectorization and unrolling, 
and then generates code via LLVM (The LLVM Compiler 
Infrastructure, 2020). 

The code generator produces parallel vector code for x86 and 
ARM CPUs with SSE/AVX and NEON, and graphs of CUDA kernels 
for hybrid CPU-GPU execution, and so targets data-parallel 
models. 

 

Rewriting 
rules 
(Steuwer, 
Fensch, 
Lindley, & 
Dubach, 
2015) 

This is an approach for the transformation of high-level functional 
expressions to high-performance OpenCL Code. 

The framework receives high-level algorithmic primitives 
representing a program (local/global, to indicate where to store 
the results of a given function; vectorization, for exploiting SIMD 
instructions, etc.) and automatically generates low-level hardware 
primitives using rewrite rules (e.g. reduce rules, for reductions, 
cancellation rules to eliminate operations equivalent to the 
identity, etc.). 

The framework targets code portability and high-performance, 
and uses an OpenCL code generator to demonstrate its 
capabilities. 

 

NOVA 
(Collins, 
Grewe, 
Grover, Lee, 
& Susnea, 
2014) 

NOVA is a polymorphic functional language, a compiler for CPUs 
and GPUs and a multi-core runtime. 

The language includes support for nested parallelism, recursion 
and type polymorphism, and offers high-level operations including 
map, reduce and scan. 

The compiler includes different optimizations that allow 
generating code for a variety of target platforms, synthesizing 
sequential C, parallel C and CUDA codes. The multi-core runtime 
for parallel C is a straightforward implementation that creates a 
number of threads and assigns an equal share of the input to the 
process. 

 
Compact 
Components 
(CoCo) 

The CoCo framework, from the SSSA AMPERE partner, is a 
component based multicore system designed targeting the 
creation of visuo-haptics applications. 
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(Ruffaldi & 
Brizzi, 2016) 

CoCo defines different components (i.e., callbacks, input and data 
ports, declarative attributes and operators). The execution of 
components is scheduled using periodic (with fixed rate) or 
sporadic (based on events) approaches. 

CoCo is integrated with Robot Operating System (ROS), a de-facto 
standard for robotics that includes drivers, algorithms, and 
developer tools. 

Embedded 
computing 

Matlab and 
Simulink 
(MathWorks, 
2020) 

Matlab is a tool for analyzing data, developing algorithms and 
creating mathematical models based on a programming language 
that expresses matrix and array mathematics directly. 

Simulink is a tool for running simulations, generating sequential 
C/C++ code and register-transfer level (RTL) code to be executed 
on an FPGA, and testing and verifying embedded systems. 

Used in the automotive domain. 

Gedae (The 
Gedae 
Development 
Environment, 
2020) 

Gedae is a development environment that includes the Idea Text 
Language and Compiler. The Idea language combines data-flow 
language abstractions, high level algebra and math similar to 
Malab, and control similar to UML. An additional architectural 
modeling language used to create the hardware model of the 
architecture. The Idea compiler targets efficiency and scalability, 
as well as portability and correctness by implementing several 
optimizations. It uses partitioning and mapping techniques based 
on a flow graph representation of the application. 

MPSoC 
Application 
Programming 
Studio 
(MAPS) 
(Ceng, y 
otros, 2008)  

MAPS is an integrated framework for the user-directed 
parallelization of C applications for MPSoCs. 

The parallelization process is done in three steps: analysis, 
partitioning and code emission. The first step considers sequential 
C code and a description of the target platform. Then, the code is 
profiled in order to extract information about possible parallel 
tasks. The approach is orthogonal to the programming model. 
Instead. Instead, the framework has been integrated with the TCT 
framework (Urfianto, Isshiki, Khan, Li, & Kunieda, 2008), which 
uses the Tightly-Coupled-Thread (TCT)  programming model 
(Isshiki, Urfianto, Kahn, Li, & Kunieda, 2006). 

ASCET (ETAS, 
2020) 

ETAS ASCET-DEVELOPER is a tool for developing applications for 
embedded systems. It includes graphical models, like the block 
diagram and state machine editors, and textual programming 
annotations, like the Embedded Software Development Language 
(ESDL) and C-code editors. 

The framework provides a Code Generator that translates function 
models into highly efficient and safe embedded C-code (ISO26262 
and IEC61508 TÜV-certified) for AUTOSAR and non-AUTOSAR 
applications. 
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Used in the automotive domain. 

DaVinci suite 
(Vector, 
2020) 

DaVinci is a tool for designing the architecture of software 
components (SW-C) for AUTOSAR ECUs.  The tool allows creating 
interfaces, define the internal behavior with runnable entities and 
link SW-C to one another. It provides special functions for 
automatically generate data mapping between SW-C, as well as 
the analysis of communication relationships. 

It also includes a Contract-Phase Generation tool that allows 
generating header files and implementation templates for C-based 
applications. 

Used in the automotive domain. 

SCADE suite 
(Ansys, 2020) 

The SCADE suite is a model-based development environment used 
to design critical software. It provides several capabilities, 
including: (1) model-base design for data-flow and state machine 
design, (2) model analysis to assess safety requirements, (3) 
debugging and simulation to examine variables and build full-
system prototypes, and (4) automatic code generators for C and 
Ada qualified to the highest level of safety across different 
domains including automotive and rail transportation applications. 

Used in the railway domain. 

MagicDraw 
(NoMagic, 
2018) 

MagicDraw is a process, architecture, software and system 
modeling tool to facilitate the analysis and design of object 
oriented (OO) system with support for Java, C++, C#, CL (MSIL) and 
CORBA IDL programming languages.  

Used in the railway domain. 

IBM 
Engineering 
Systems 
Design 
Rhapsody 
(Rational 
Rapsody) 
(Gery, Harel, 
& Palachi, 
2002) 

Rhapsody is a solution for modeling and system design. It is 
integrated with the IBM Engineering portfolio, offering a design 
and test environment that supports UML, SysML, UAF and 
AUTORSAR. 

The key technologies offered with Rhapsody are: (1) model-code 
associativity, to leverage the benefits of DMSL without losing 
access to the implementation; (2) automated implementation 
generation, with support for C, C++, Java, COM and CORBA; (3) 
execution framework, providing APIs for the different languages, 
used to perform manipulations at model abstraction level; (4) 
model execution, enabling a runtime model that allows tracing 
and controlling execution at a high abstraction level; and (5) 
model-based testing, used for testing and failure detection. 

Used in the railway domain. 

 

APP4MC 
(Eclipse 
Foundation, 
Inc, 2020) 

On top of the Amalthea data model the APP4MC platforms offers a 
variety of tools like migration, visualization tools and framework 
supporting model-2-model and model-2-text transformations. The 
APP4MC transformation framework encapsulates various 



         

 27 

D2.1 Model Transformation Requirements 

technologies: Java, as a programing language; Eclipse extension 
points, as a mechanism to load the configuration; xtend2, as a 
template definition language Templates, with Java like syntax and 
good support for lambda expressions, which are converted into 
java code which can be debugged during execution; and Google 
Guice, as a dependency injection mechanism to provide flexibility 
to hook customer templates (containing specific transformation 
rules) and override the definitions of platform templates. 

It provides more flexibility for the developers to develop their 
application e.g. built in mechanism for caching objects, clear 
separation w.r.t. configuration and templates) and separate the 
transformation templates as platform and customer templates. 

This framework acts like a wrapper around model transformation 
technologies (like Xtend2, ATXL) and provides the complete 
infrastructure for easily specifying meta-models, hooking loaders 
for the models, caching mechanism, defining transformation code, 
building update sites or command line products and testing of the 
transformation code. 

Within Bosch, the framework is used to generate synthetic code 
that imitates time and memory accesses described in AMALTHEA. 
It also generates the necessary code and configuration stubs to 
hook the synthetic code to communicate with and activate existing 
AUTOSAR Adaptive applications. Within AMPERE, we will extend 
this framework towards generating ROS2 nodes based on an 
Amalthea model. 

 

7. Summary and Conclusions 
This deliverable analyzes different DSML and parallel programming models, considering their 
capabilities to fulfill functional and non-functional requirements, as well as the mapping 
possibilities between the AMALTHEA DSML and the OpenMP parallel programming model. The 
deliverable also covers the state-of-the-art code synthesis tools used in different computing 
domains, including HPC, AI and EC. 

Moreover, this deliverable provides a preliminary analysis of the compatibility of OpenMP and 
AMALTHEA, from the base language, the execution model and the non-functional information 
perspective. Regarding AMALTHEA, the way parallelism is exposed might be cumbersome for 
defining the parallelism exposed by models like OpenMP. Regarding OpenMP, the language lacks 
features for defining non-functional requirements like energy consumption, ensuring reliability 
or specifying timing requirements. Fortunately, there are several proposals that already push to 
extend the language in this direction. Furthermore, there is a synergy between the 
representation of the system in AMALTHEA and OpenMP by means of the TDG. This is of 
paramount importance for the definition of the meta model driven abstraction that will 
communicate the two components. 
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8. Acronyms and Abbreviations 
- AIT – Accelerator Integration Tool 

- API – Application Program Interface 

- AUTOSAR – AUTomotive Open System ARchitecture  

- BSC – Barcelona Supercomputing Center 

- CoCo – Compact Components 

- CPU – Central Processing Unit 

- DFL – Data Flow Language 

- DMLL – Distributed Multiloop Language 

- DSML – Domain Specific Modelling Language 

- DSP – Digital Signal Processor 

- EDF – Earliest Deadline First 

- FPGA – Field-Programmable Gate Array  

- GPU – Graphics Processing Unit  

- HAD – Highly-Automated Driving 

- HPC – High-Performance Computing 

- IRV Internal Variable 

- LL – Least Laxity 

- MAPS – MPSoC Application Programming Studio  

- MBSE – Model-Based Systems Engineering 

- MDE – Model Driven Engineering 

- MS – Milestone 

- OO – Object Oriented 

- OS – Operating System 

- PPM – Parallel Programming Model 

- RTE – Run-time environment 

- SM – Stream Multiprocessor 

- SW-C – Software-Component  

- TDG –  Task Dependency Graph 

- TSP –  Task Scheduling Point 

- VFB – Virtual Function Bus 
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