

D2.1 Model Transformation Requirements
Version 1.0

Documentation Information

Contract Number 871669

Project Website www.ampere-project.eu

Contratual Deadline 31.07.2020

Dissemination Level PU

Nature R

Author Sara Royuela (BSC)

Contributors
Eduardo Quiñones (BSC), Michael Pressler (BOSCH), Delphine Longuet
(TRT) and Alexandre Amory (SSSA)

Reviewer Jan Rollo, Enkhtuvshin Janchivnyambuu (SYSGO)

Keywords
Model Driven Engineering, Parallel Programming Models, Functional
and non-Functional Requirements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 871669.

Ref. Ares(2020)4082539 - 03/08/2020

 1

D2.1 Model Transformation Requirements

Change Log

Version Description Change

V0.1 Initial version by Sara Royuela and contributions by Eduardo Quiñones (BSC)

V0.2 Contributions by Michael Pressler (BOSCH) on AMALTHEA

V0.3 Contributions by Delphine Longuet (TRT) on CAPELLA

V0.4 Contributions by Alexandre Amory (SSSA)

V1.0 Deliverable ready for submission

 2

D2.1 Model Transformation Requirements

Table of Contents

1. Executive Summary ... 3

2. Introduction ... 3

3. Model driven engineering overview .. 4

3.1. AMALTHEA and AUTOSAR .. 4

3.1.1. General Description .. 4

3.1.2. Parallelism exposed .. 7

3.2. CAPELLA... 7

3.2.1. General Description .. 8

3.2.2. Parallelism exposed .. 10

4. Parallel programming models.. 10

4.1. CUDA ... 10

4.2. OpenCL .. 12

4.3. OpenMP .. 13

4.4. OmpSs ... 14

4.5. Summary: Programming models productivity .. 15

5. Preliminary analysis of DSML transformation: from AMALTHEA to OpenMP 17

5.1. Base Language ... 17

5.2. Execution Model ... 18

5.3. Support for functional and non-functional requirements .. 20

5.3.1. Functional safety and correctness ... 20

5.3.2. Time predictability.. 21

5.3.3. Energy ... 22

6. State-of-the-art synthesis tools ... 23

7. Summary and Conclusions ... 27

8. Acronyms and Abbreviations ... 28

9. References ... 28

 3

D2.1 Model Transformation Requirements

1. Executive Summary
This deliverable covers the work done during the first phase of the project within WP2. The
deliverable spans 7 months’ work (including 1 extra month with respect of the Grant Agreement
(European Comission and AMPERE beneficiaries, 2019) due to the COVID19 situation), and
handles the work done in Task 2.1 “Model transformation requirements specification” to reach
milestone 1 (MS1). Concretely, the deliverable covers the activities conducted within WP2
towards the implementation of a code synthesis component capable of generating the optimized
parallel code based on the requirements specified in the DSML and the information gathered by
the tools for multi-criterion analysis. For this purpose, Task 2.2 will define the meta parallel
programming model interface gathering the information exposed in the meta model driven
abstraction and the results of the analysis of the multi-criterion optimization layer. The meta
parallel programming model will be then transformed to the underlying high-level parallel
programming models (PPMs) supported by the processor architecture selected in Task 5.1
(AMPERE, 2020).

The target at MS1 is: (1) the definition of the code synthesis tool for an efficient model
transformation and parallel programming model support to express functional and non-
functional constraints, and (2) identification of current state-of-the-art synthesis tools. The first
milestone of Task 2.1 has been carried out successfully, and all objectives of MS1 have been
reached and documented in this deliverable.

2. Introduction
WP2 aims to develop a meta parallel programming abstraction independent of the underlying
processor architecture, capable of capturing all system functional and non-functional
requirements, as well as incorporating the parallel semantics required to enable and efficient
model transformation, optimized for performance, timing, resiliency, cyber-security and energy-
efficiency. With such a purpose in mind, Section 3 introduces the general requirements of the
model driven engineering tools, Section 4 introduces the requirements of the parallel
programming models, and Section 5 discusses the compatibility between the domain specific
modelling languages (DSML) and the parallel programming models (PPM).

The relation of this deliverable with other WP is shown in Table 1, considering deliverables and
tasks that are involved with the study performed in this deliverable.

Table 1. Relationship between D2.1 and other WPs.

Deliverable Leader Task Description

D1.1 THALIT T1.1 System models requirements specification and use case
selection

D3.1 ISEP T3.1 Multi-criteria optimization requirements specification

D4.1 SSSA T4.1 Runtime requirement specification

D5.1 SYSGO T5.1 Reference parallel heterogeneous hardware selection

 4

D2.1 Model Transformation Requirements

3. Model driven engineering overview
Model Driven Engineering (MDE) is a structured development paradigm focused on models as
central artifacts to describe CPS requirements, capture the overall CPS architecture (including
HW and SW elements if needed), and specify functional behavior and interfaces. MDE methods
provide the capability to reason about the properties and relationships between the components
of the system while abstracting their complexities. Particularly, MDE presents the following
benefits:

• MDE allows defining components with clear interfaces facilitating the integration of new
features by means of composability, i.e., the non-functional requirements fulfilled when
developing new components in isolation is maintained at system integration.

• MDE enables the use of code synthesis methods and tools that transform the system
model description into source code to be compiled and executed in the target platform.
These tools entail a correct-by-construction paradigm in which consistency between the
transformed code and the system models can be ensured.

• MDE enables the development of domain specific modelling languages (DSML) that
facilitate the description of the cyber physical interactions characteristics from each
domain.

For these reasons, MDE is a methodology suitable to build complex systems with conflicting
properties such as high dependability, high performance and competitive cost. Examples of such
systems are those used in the automotive and the railway industries, as the use cases proposed
in the AMPERE project (AMPERE, 2020).

Unfortunately, current MDE synthesis tools, like AUTOSAR used in the automotive domain,
transform DSMLs into a sequence of concurrent code suitable only for single-core execution.
Other tools like Simulink Coder provide a limited support for parallelism, allowing for multi-core
execution of models but without exploiting the possible parallelism inside the model subsystems.

This section briefly introduces the three state-of-the-art DSML considered in the AMPERE
project, focusing on those relevant aspects of the DSML execution model that can impact on the
parallel execution of the system. See Deliverable D1.1 (AMPERE, 2020) for a complete
description of the DSMLs addressed by the AMPERE project.

3.1. AMALTHEA and AUTOSAR
AMALTHEA and AUTOSAR are two different state-of-the-art standards for distributed model-
based development in the automotive industry. A general description of the models and the
analysis of the opportunities for exploiting parallelism in the model are detailed next.

3.1.1. General Description

AMALTHEA (BOSCH, 2020) is an open source tool platform for engineering embedded multi- and
many-core software systems proven in the automotive sector by Bosch and their partners. The
development of the AMALTHEA data model and the platform is part of the Eclipse APP4MC
project (Eclipse Foundation, Inc, 2020). AMALTHEA offers certain compatibility with AUTOSAR
(Fürst, y otros, 2009).

AUTOSAR (AUTomotive Open System ARchitecture) is an alliance of key industrial players in the
automotive industry, establishing a de-facto open industry standard for the development and

 5

D2.1 Model Transformation Requirements

execution of automotive software architecture. The standard defines two main platforms: the
Classic Platform for embedded systems with hard real-time and safety-critical constraints, and
the Adaptive Platform for fail-safe high-performance computing ECUs for use cases such as
autonomous driving.

AMLTHEA includes two different models at the top level: the system model, and the trace model.
The former is used for designing and modeling, while the latter is used for testing and providing
feed-back to the system model. WP2 aims to focus on the system model because it is the one
that includes the information about the parallel nature of the system and the functional and non-
functional requirements of system components. Concretely, The AMALTHEA system model is
composed by a series of data models that allow defining: (1) the units of (concurrent) work and
the functionalities implemented in the system (in terms of execution time, memory access, etc.),
(2) the elements of the hardware platform (e.g., processors, memories, etc), and (3) the mapping
between the software and the hardware elements (i.e., schedulers, work mapping, etc.). The
most relevant data models for the model transformation, together with their components and
functionalities, are introduced next:

a. Software model. Among others, it defines:

o Task (process): The unit of concurrency at the operating system (OS) level scheduler
composed of a sequence of functionalities (runnables) that run sequentially. It is
defined by a priority, a preemption model, a deadline, a multiple time activation
(MTA) and a call tree (or activity graph).

o Runnable (function): An atomic functionality not visible by the OS scheduler. It is
defined by the number of cycles it takes to execute and the access it does to variables
(e.g., labels, frequency, etc.)

b. Stimuli model: defines the activation of tasks using a set of attributes like the type of
activation (e.g., periodic, sporadic, etc.), the offset and the recurrence.

c. Constraints model. Among others, it defines:

o Runnable sequencing constraints: define the sequential ordering among runnables
based on, for example, data exchange.

o Event chains: relate stimuli to events, and allows defining sequences, parallel paths
and combinations of both.

o Timing constraints: define restrictions for the execution of the events like repetition
and delay.

These three models allow defining the components relevant to determine the units of
concurrency and the relationships between these units, as well as several non-functional
requirements of the system regarding performance and time-predictability. Moreover,
AMALTHEA includes two complementary models related to the underlying platform that are
particularly interesting for WP2, which are:

a. Hardware model. Among others, it defines:

o Processing units: number and features like frequency, scratchpad, flash, etc.
o Memory: available units, latency, etc.

 6

D2.1 Model Transformation Requirements

b. OS model. Among others, it defines the scheduler with attributes like the algorithm, and the
delay of context switch, among others.

AUTOSAR provides similar abstractions to those supported by AMALTHEA system model. In fact,
the design of AMALTHEA has been highly inspired in AUTOSAR. From a software model
perspective, an AUTOSAR application is composed of a set of runnables that communicate with
each other, and AUTOSAR tasks, which agglomerate runnables with the same release period and
are the unit of scheduling of the AUTOSAR run-time environment (RTE), as depicted in Figure 1.

Figure 1. Content of AUTOSAR Configuration Descriptions (Sailer, 2014).

For a constraints model perspective, the execution order of runnables is constraint by two kinds
of precedences: (1) simple precedence and (2) extended precedence, which result from the
communication among runnables with the same or different release period, respectively. As a
result, simple precedences only exist within tasks, while extended precedences only exist among
tasks.

AUTOSAR provides rich communication method, described by a virtual function bus (VFB) and
software-component (SW-C) model. Two communication mechanisms for the exchange of a
single data element between runnables are defined: inter-runnable-variable (IRV) and sender-
receiver (SR) communication, used between runnables from the same or from different SW-Cs,
respectively. The run-time environment (RTE) guarantees data consistency for both mechanisms.
The developer can define two modes: by default, communication is explicit, i.e. a precedence is
imposed from producer to consumer, defining a strict order of execution, and the consumer uses
the most recent value of the producer; optionally, communication can be defined as implicit, in
which data is distributed to all consumers after the producer execution has finished. On the
consumer side data is buffered and calculations are performed on a copy. As a result, concurrent
execution of runnables is possible, because data are buffered and delivered with a delay. This is a
form of asynchronous communication. AMALTHEA also allows expressing sender-receiver
communication. Although the model is much more limited in this case, the dynamic execution
model allowed by AUTOSER is similar to AMALTHEA.

AUTOSAR also provides support for the specification of the timing behavior of applications
through the AUTOSAR Timing Extensions (TIMEX) (Peraldi-Frati, Blom, Karlsson, & Kuntz, 2012).
This is used in the AUTOSAR Classic Platform to associate timing requirements and specifications
(e.g., worst-case response time of an end-to-end service chain) to (1) functional blocks of the

 7

D2.1 Model Transformation Requirements

specification during the early-stage specification phases, and (2) the intermediate elements of
the function networks obtained during the functional decomposition. For example, TIMEX allows
for the specification of worst-case execution times and worst-case transmission times for
communications.

Unfortunately, regarding the possibility to run components on parallel and multi-core platforms,
AUTOSAR and AMALTHEA lack a detailed model because they have tackled the execution
semantics from an OS point of view. The complexity of modern automotive systems increases
the importance of this inadequacy.

3.1.2. Parallelism exposed

 AMALTHEA and AUTOSAR define three execution scopes in which parallelism can be potentially
exploited with different granularity levels:

1. Among tasks: this is the only option currently available to exploit through the OS
scheduler. In case of AMALTHEA, it provides a set of synchronization mechanisms among
tasks to ensure the correct order of execution.

2. Among runnables: this option is currently not supported because the model forces
runnables to execute sequentially within a task. This limitation in AMALTHEA is a legacy
aspect of the model, inherited from AUTOSAR. To accomplish concurrency among
runnables, they must be enclosed in different tasks. It is worth mentioning that Bosch
has proposed to create dedicated tasks only to transfer data from/to the GPU and
execute GPU kernels concurrently from the rest (Wurst, y otros, 2019).

3. Inside runnables: this option is transparent to the AMALTHEA and AUTOSAR models since
the internals of the runnables are not exposed to the model and it is not visible to the OS
scheduler.

As a result of our analysis, we conclude that: (1) parallelism among tasks is a coarse-grained level
of parallelism suitable for being exploited by the OS, as it is now; (2) parallelism among runnables
is a fine-grained level of parallelism suitable for being exploited by the high-level parallel
programming model in the shared-memory machine (or symmetric multi-processing, SMP); and
(3) parallelism inside runnables is an even more fine-grained level of parallelism suitable for
being exploited by the parallel programming model (not necessarily the same) in the SMP as well
or in dedicated accelerators (e.g., GPU or FPGA).

Currently, AMALTHEA only supports the three-levels of parallelism described above by wrapping
all runnables suitable for concurrency in different tasks, using the task as the unit of parallelism.
Then, these newly created tasks must be properly synchronized with the rest of the tasks, as well
as be assigned to a specific scheduler to ensure the correct order of execution. This forces the
programmer to do the additional exercise of including certain runnables to “artificial” tasks.

3.2. CAPELLA
Capella (Roques, 2017) is an open-source tool for model-based systems engineering developed
by Thales. A general description of the model and an overview of the opportunities for exploiting
parallelism in the model are detailed next.

 8

D2.1 Model Transformation Requirements

3.2.1. General Description

Capella provides SysML-inspired diagrams for graphical modelling of systems, hardware and
software architectures. It implements the principles and recommendations defined by Arcadia
(Voirin, 2017), the Thales standard systems engineering method. Capella is implemented on top
of the Eclipse IDE platform, based on the PolarSys solution.

The Arcadia method enforces an approach structured on different engineering perspectives.
These perspectives are clearly separated between system contexts and need modeling
(operational need analysis and system need analysis) and solution modeling (logical and physical
architectures). The perspective dedicated to the need understanding help the system engineer to
define what the users of the system need to accomplish and what the system has to accomplish
for the users. The perspectives for the solution architectural design show how the system will
work in order to fulfil its expectations and how the system will be developed and built. The
perspective of interest for the AMPERE project is the physical architecture, at the lowest level of
abstraction, which describes the finalized solution, with enough details to provide unambiguous
contracts towards downstream engineering teams.

The Capella workbench can be enhanced or specialized for a given business need, according to
the concept of viewpoint. In the context of the AMPERE project, the relevant viewpoint is Tideal,
which allows system architects to capture the performances properties and requirements of
complex real-time embedded systems.

The Tideal viewpoint extends diagrams used in the physical architecture perspective (Physical
Architecture Blank diagrams and End-To-End Flow Scenario diagrams). It adds new concepts such
as Timing Design Scope that allows to select all the elements that need to be analyzed and
schedulers (see Figure 2) and End-To-End Flow timing constraints (see Figure 3). It also extends
existing Capella elements such as Physical Component, Physical Functions and Executions to
define their role in the real-time system and their timing properties.

Figure 2. Physical Architecture Blank diagram extension

 9

D2.1 Model Transformation Requirements

Figure 3. End-to-End Flow diagram extension

Since the aim of the AMPERE project is to guarantee by construction that the resulting system
fulfils its functional and non-functional requirements, the design models should allow for analysis
and verification. However, Capella does not propose behavioral semantics, even within the
Tideal extension. The Time4Sys1 open-source platform bridges the semantic gaps between
existing system modelling editors and real-time analysis tools. It implements model
transformations in order to translate the Capella/Tideal design models into verification models
that can be taken as inputs by verification tools. Time4Sys is not limited to a specific design
framework or a specific tool. Instead, it provides ways to extend the import (resp. export)
mechanisms in order to connect any existing modelling language (resp. analysis tool).

Time4Sys implements a dedicated editor based on its own implementation of UML-MARTE meta-
model (Object Management Group, 2019). This editor is basically not used when the design
model is directly generated from Tideal but the analysis of a problem may require a real-time
expert to check and adapt the design model (e.g. a deadline is missed); this short trial/error loop
could then be done directly in Time4Sys without having to edit the upstream architecture model.

Time4Sys is composed of two building blocks, the design and the verification (or analysis) pivot
models, as well as a set of transformation rules between them. It allows representing a synthetic
view of the system design model that captures all elements, data and properties impacting the
system timing behavior and required to perform timing verification (e.g. tasks mapping on
processors, communication links, execution times, scheduling parameters, etc.). More precisely,
the design model consists of the following elements:

• Resources:
o Hardware resource: a processor, with a scheduling policy, to which is allocated a

set of tasks.
o Software resource: a task, with a (relative) deadline.
o Bus: a communication medium to which is allocated a set of communication

channels.

• Applications:
o Execution or communication step: characterized by a best- and worst-case

execution times and a priority. Execution steps correspond to tasks,
communication steps correspond to communication channels.

1 https://www.eclipse.org/time4sys/

https://www.eclipse.org/time4sys/

 10

D2.1 Model Transformation Requirements

o Event: the activation policy for an execution step (periodic, sporadic, burst, sliding
window, once…)

o Relations between (execution or communication) steps:
 Dependency: the completion of a step on a resource can trigger the

activation of a step on the same or on another resource.
 Mutual exclusion: the steps involved cannot be executed concurrently

since for instance, they need access to the same memory resource.

Various scheduling policies are supported by Time4Sys, including:

• First-in-First-out (FIFO): tasks are treated in the same order as they are activated.

• Fixed priority (FPS): each task on a given processor comes with a given static priority and,
upon completion of a task instance, the highest priority task instance in the waiting
queue is selected for execution.

• Preemptive FPS: a version of FPS where a lower priority task can be temporarily stopped
to execute a newly activated instance of a higher priority task.

• (Preemptive) RMS: FPS where tasks with shorter periods necessarily have a higher
priority.

• Earliest Deadline First (EDF): the task with the closest deadline is executed first.

• Shortest job first (SJF): the shortest task instance is selected first.

• Time-Division Multiple Access (TDMA) and Round Robin: tasks are allocated slots in a
cyclic manner to execute (part of) their instances, one after the other.

3.2.2. Parallelism exposed

Capella and Time4sys define a way to express parallelism using tasks running on the same
hardware resource. This constitutes a high level view of parallelism but currently no finer
modeling can be done in Capella or Time4Sys. Shared memory accesses can be expressed using
mutual exclusion. Currently, a task releases a mutex when it stops running, even if the task has
not completed (e.g., it has been preempted by a higher priority task). This means that it has
currently no interests for tasks running on the same hardware resource. If necessary, a richer
model for shared memory could be developed.

4. Parallel programming models
This section introduces basic information about the execution model and the memory model
supported by the parallel programming models considered for the AMPERE project and
supported by the two parallel processor architectures selected: The NVIDIA Jetson AGX and the
Xillinx UltraScale+ (see Deliverable D5.1 (AMPERE, 2020) for further information).

4.1. CUDA
CUDA (NVIDIA®, 2020) is a parallel programming model designed to naturally map the parallelism
within an application to the massive parallelism of the stream multiprocessors (SMs)
implemented in NVIDIA devices. The CUDA platform is accessible through CUDA-accelerated
libraries, compiler directives (e.g., OpenACC), and extensions to industry-standard programming
languages (e.g., C, C++). Additionally, interfaces including OpenCL and OpenGL are also
supported.

 11

D2.1 Model Transformation Requirements

A CUDA program is a serial program that calls parallel kernels, i.e., functions or full programs.
Each kernel executes across a set of parallel threads organized in a hierarchy of grids of thread
blocks. A thread block is a set of concurrent threads that can cooperate through synchronization
and shared access to a memory space private to the block. A grid is a set of threads block that
may execute in parallel with other grids. Parallelism is determined explicitly by specifying the
dimensions of a grid and its thread blocks when launching a kernel.

Parallel execution and thread management are automatic. All thread creation, scheduling and
termination are handled by the underlying system, mostly directly in hardware. Per block thread
synchronization is accomplished calling the __syncthreads() intrinsic.

Threads may access data from multiple memory spaces: per-thread local memory, per-block
shared memory and global memory. Global memory is managed via the cudaMalloc() and
cudaFree() runtime calls. To support a heterogeneous system architecture combining a CPU and
a GPU, each with its own memory system, CUDA programs must copy data between the host
memory and the device memory. Unified memory is a component of CUDA that provides
managed memory to bridge the host and device memory spaces by defining a memory space in
which all processors see a single coherent memory image with a common address space.

Listing 1 shows a simple example of a CUDA parallel program. There, the kernel matrix_mul is
specified by means of the __global__ specifier. The threadIdx, blockIdx and blockDim are built-in
variables that allow accessing each thread, block and block dimension respectively.

The concurrency among kernels is managed using CUDA streams. A stream is a sequence of
operations that execute in issue-order on the GPU. Using several streams allows the concurrent
and synchronous or asynchronous execution of kernels.

Newer versions of CUDA include a new paradigm, CUDA graphs, offering two main
characteristics: (1) it allows expressing work as graphs rather than single operations, and (2) it

Listing 1. CUDA matrix multiplication example.

/* kernel.cu */

__global__ void matrix_mul(float A[N][N], float B[N][N], float C[N][N],

int wA, int wB)

{

 int col = blockIdx.x * blockDim.x + threadIdx.x;

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 float th_value = 0;

 for (int k = 0; k < wA; ++k)

 th_value += A[row * wA + k] * B[k * wB + col];

 C[row * wA + col] = th_value;

}

/* main.c */

int main()

{

 …

 dim3 threadsPerBlock(16, 16);

 dim3 numBlocks(N/threadsPerBlock.x, N/threadsPerBlock.y);

 matrix_mul<<numBlocks, threadsPerBlock>>(A, B, C, wA, wB);

 …

}

 12

D2.1 Model Transformation Requirements

enables a define-once-run-repeatedly execution flow. A graph consists of a series of operations,
such as memory copies and kernel launches, connected by dependencies and defined separately
from its execution. The programming interface offers

4.2. OpenCL
OpenCL (Khronos OpenCL working group, 2020) is an open standard for writing programs that
execute across heterogeneous platforms including CPUs, GPUs, DSPs, FPGAs and other
accelerators. Naturally, OpenCL pursues portability while considering programmability.

The OpenCL architecture consists of one host (CPUD-based) that controls multiple compute
devices (CPUs and GPUs). Each of these consists of multiple compute units (equivalent to stream
multiprocessors in NVIDIA, and stream cores or SIMD engines in AMD) and the latter contain
multiple processing elements, each of them executing OpenCL kernels. So, the kernel is the basic
unit of parallelism. Kernel bodies are instantiated once per work item (equivalent to a CUDA
thread), and each work item gets a unique global id. Work-items are wrapped in work-groups
(equivalent to a CUDA thread block).

OpenCL offers fine-grained data- and thread-parallelism (at the work-item level) nested within
coarse-grained data- and task-parallelism (at the work-groups level). Synchronization in the form
of memory fences is possible within threads in a work-group, as well as synchronization barriers
for threads at the work-item level. Additionally, the host can use blocking API operations to wait
for completion of certain events.

Listing 2 shows a simple example of a OpenCL parallel program. There, the kernel matrix_mul is
specified by means of the __global__ specifier. The threadIdx, blockIdx and blockDim are built-in
variables that allow accessing each thread, block and block dimension respectively.

OpenCL has an advantage over CUDA, and is that it can be executed, not only in any GPU
including the library, but also in the host. Hence, schedulers could decide to execute a given task
with a unique OpenCL implementation in the host based on the availability of the resources or
the performance expected for the given device (Wen, Wang, & O'boyle, 2014).

 13

D2.1 Model Transformation Requirements

4.3. OpenMP
OpenMP (OpenMP ARB, 2018) is an API aiming at facilitating parallel programming in shared-
memory systems first, and also in heterogeneous systems based on the extensions of later
specifications. The model allows expressing parallelism in a fork-join fashion. Parallelism is
spawned when a parallel construct is reached, creating a team of threads, and joined when the
implicit barrier at the end of a parallel region in found. Furthermore, parallelism can be spawned
following two different paradigms: the thread-based model, which allows for data parallelism,
and the task-based model, which allows for task parallelism.

Synchronization of threads occurs when a barrier construct is found, and also based on flush
directives. Synchronization of tasks occurs based on taskwait and taskgroup directives, and also
on task dependencies, hence enabling a data-flow model.

/* kernel.cl */

__kernel void matrix_mul(__global float A*, __global float B*, __global

float C*, int wA, int wB)

{

 int col = get_global_id(0);

 int row = get_global_id(1);

 float th_value = 0;

 for (int k = 0; k < wA; ++k)

 th_value += A[row * wA + k] * B[k * wB + col];

 C[row * wA + col] = th_value;

}

/* main.c */

int main() {

 …

 clGetDeviceIDs(platform_ids[0],

 gpu ? CL_DEVICE_TYPE_GPU : CL_DEVICE_TYPE_CPU,

 1, &device_id, NULL);

 context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);

 commands = clCreateCommandQueue(context, device_id, 0, &err);

 lFileSize = LoadOpenCLKernel(“kernel.cl",

 &KernelSource, false);

 program = clCreateProgramWithSource(context, 1,

 (const char **) & KernelSource, NULL, &err);

 err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

 kernel = clCreateKernel(program, "matrix_mul", &err);

 …

 err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&d_C);

 err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&d_A);

 err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&d_B);

 err |= clSetKernelArg(kernel, 3, sizeof(int), (void *)&wA);

 err |= clSetKernelArg(kernel, 4, sizeof(int), (void *)&wB);

 err = clEnqueueNDRangeKernel(commands, kernel, 2,

 NULL, globalWorkSize, localWorkSize, 0, NULL, NULL);

 err = clEnqueueReadBuffer(commands, d_C, CL_TRUE, 0,

 mem_size_C, h_C, 0, NULL, NULL);

}

Listing 2.OpenCL matrix multiplication example.

 14

D2.1 Model Transformation Requirements

OpenMP offers a relaxed-consistency, shared-memory model that defines three different views
of the memory: a shared space accessible to all threads called memory; a temporary view of
memory for each thread; and a threadprivate memory, private to each thread that cannot be
accessed by any other thread.

The accelerator model, based on the tasking model, is an extension that pursues portability
between devices with different ISAs, as well as programmability, by easing the burden of defining
data movements between the host and the accelerator, and performance boosted by inserting
accelerated parts in the applications. This is a host-centric model where a host device offloads
computation to one or more target devices with their own local storage.

The OpenMP accelerator model defines a thread hierarchy where OpenMP threads (equivalent
to CUDA threads), are wrapped into teams (equivalent to CUDA thread blocks), which are in turn
wrapped into leagues (equivalent to CUDA grids). The parallel for construct can be used to
exploit the former, while the teams and distribute constructs are used to exploit the two latter.

Listing 3 shows an example of the computation of a matrix multiplication using the OpenMP
accelerator model. The user code remains the same as for a sequential version of the
benchmark. Just additional directives are inserted so the compiler knows how to do the
transformation to exploit that computation in the accelerator.

4.4. OmpSs
OmpSs (BSC Programming Models, 2019) is a task-based parallel programming model built on
top of a set of C/C++ and Fortran language directives and a runtime API. It aims at fast-
prototyping and offers a simple yet complete set of directives and runtime options that allows
covering both homogeneous and heterogeneous architectures without the need for changing the
code.

Ompss defines a thread pool based execution model, meaning that the OmpSs application
defines a pool of threads at the beginning of the program, while the application is initially
executed just by one of them. Then, parallelism is distributed using tasks. Compared to OpenMP,
it offers interesting features such as richer dependency clauses or the implements construct,
which allows defining different implementations (e.g., C, CUDA and OpenCL) for the same kernel.

Listing 3. OpenMP accelerator model matrix multiplication example.

/* main.c */

int matrix_mul(float A[N][N], float B[N][N], float C[N][N]) {

 #pragma omp target device(0) map(to:A[0:N*N], B[0:N*N])

 map(from:C[0:N*N]

 #pragma omp teams distribute parallel for private(i,j,k)

 for (i=0; i<n; i++)

 for (j=0; j<n; j++)

 for (k=0; k<n; k++)

 C[i][j] += A[i][k]*B[k][j];

}

int main() {

 …

 matrix_mul(A, B, C);

 …

}

 15

D2.1 Model Transformation Requirements

The memory model is very similar to that of OpenMP, although the rules to define the data-
sharing attributes in OmpSs are slightly different (e.g., in OmpSs, the variables appearing in the
dependency clauses are shared by default).

OmpSs supports heterogeneity with the target construct. The region inside includes the kernel
to be executed, and the implementation shall match the type of device specified in the device

clause (e.g., if the device clause receives the value cuda, then the kernel should be written in
CUDA). This hybrid programming approach allows easily taking advantage of already existing
CUDA/OpenCL kernels, while offering a good programmability to offload them and manage data.

Additionally, OmpSs also has support for FPGAs (Programming Models @BSC, 2020), by using the
fpga value in the device clause. In this case, the kernel to be offloaded to the FPGA is
transformed using the Accelerator Integration Tool (AIT) to generate FPGA bitstream. Listing 4
shows an example of the computation of a matrix multiplication using OmpSs and CUDA. There,
the OmpSs model is used to define parallelism across CUDA kernels and handle the offloading,
including data copies between the host and device memories.

4.5. Summary: Programming models productivity
The programming models used within the AMPERE project must facilitate the expression of the
required levels of concurrency to exploit all hardware resources in the underlying heterogeneous
architecture. Table 2 shows a comparison in terms of forms of parallelism and architecture
abstraction features available in the parallel programming models just presented. Further, Table
3 compares the models based on synchronization, mutual exclusion, language binding, error
handling and tool support. Overall, OpenMP and OmpSs provide the most comprehensive set of
features to support a wide range of parallelism patterns, synchronizations and architectures, on
both the host and the device, by allowing modelling the memory hierarchy. Additionally,
OpenMP offers two advantages over the rest of programming models. First, it defines an

Listing 4. OmpSs+GPU matrix multiplication example.

/* kernel.cl */

#pragma omp target device(cuda) ndrange(2,N,N,16,16) copy_deps

#pragma omp task inout([N*N]C) in([N*N]A,[N*N]B)

__global__ void matrix_mul(float A[N][N], float B[N][N], float C[N][N],

int wA, int wB)

{

 int col = blockIdx.x * blockDim.x + threadIdx.x;

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 float th_value = 0;

 for (int k = 0; k < wA; ++k)

 th_value += A[row * wA + k] * B[k * wB + col];

 C[row * wA + col] = th_value;

}

/* main.c */

int main() {

 …

 matrix_mul(A, B, C);

 …

}

 16

D2.1 Model Transformation Requirements

emerging error model that includes features for cancelling parallel execution, i.e., aborts an
OpenMP region and causes executing tasks to proceed to the end of the canceled region.
Proposals to extend this model with further extend this model with support for call-backs, and
other resiliency mechanisms already exist (Wong, y otros, 2010). Second, it allows binding the
computation with the data by defining a binding policy (i.e., master, to assign all threads to the
same place2 as the master thread; close, to assign threads close to its parent; and spread, to
create a sparse distribution of the threads of a team among the set of places of the parent’s
place partition3) to a parallel region.

Table 2. Comparison of the presented parallel programming models based on parallelism patterns and architecture abstraction
(extended from (Yan, Chapman, & Wong, 2015)).

 Parallelism Architecture abstraction

Parallel
Programming

Model

Data
parallelism

Asynchronous
task

parallelism
Host/device

Abstraction of
memory
hierarchy

Data and
computation

binding

Explicit data mapping
host/device

OpenMP
parallel for

simd
task/taskloop

Host and device
(target)

OMP_PLACES,
teams and
distribute

proc_bind
map(to|from|tofrom|
alloc)

OmpSs for task
Host and device
(target/
implements)

ndrange(n,
G1,…, Gn,
L1,…,Ln)

-
copy_in/copy_out/
copy_inout/copy_deps

CUDA <<<…>>>

Async kernel
launch and
memcpy,

CUDA graphs

Device only
Blocks/threat
shared
memory

- cudaMemcpy

OpenCL kernel clEnqueTask Host and device
Work-group
and work-
item

- bufferWrite

Table 3. Comparison of the presented parallel programming models based on synchronizations, mutual exclusions, language
binding, error handing and tool support (extended from (Yan, Chapman, & Wong, 2015)).

 Synchronizations

Mutual
exclusion

Language
library

Error
handling

Tool support Parallel
Programming

Model
Barrier Reduction Join

OpenMP barrier reduction taskwait
Locks, critical,
atomic, single,
master

C/C++ and
Fortran based
directives

cancel

OMPT
interface/
Extrae (BSC
Performance
Tools, 2020)

OmpSs - reduction taskwait critical, atomic
C/C++ and
Fortran based
directives

-
Extrae (BSC
Performance
Tools, 2020)

2 In OpenMP, a place is an unordered set of processors on a device.
3 In OpenMP, a place partition describes the places currently available to the execution environment for a given
parallel región.

 17

D2.1 Model Transformation Requirements

CUDA _syncthreads - - atomic
C/C++
extensions

-
NVIDIA profiling
tools

OpenCL
work_group
barrier

work_group
reduction

- atomic
C/C++
extensions

exceptions
System/vendor
tools

Nonetheless, for the exploitation of the accelerator devices, OpenMP might not provide the best
performance compare to dedicated languages such as CUDA for NVIDIA GPUs. In these cases the
programmability might be harmed by the difficulty of using CUDA. In this regard, there is a
proposal (Yu, Royuela, & Quiñones, 2020) that use the OpenMP programming language to define
workflows that can later be transformed into CUDA graphs for enhanced performance
opportunities. In a similar line, the OmpSs programming model also runs on GPUs and FPGAs; for
the former, it uses kernels written with OpenCL and CUDA, and for the latter it uses high-level
OmpSs C/C++ and compiler transformations (Filgueras, y otros, 2014) for lowering the code to
the target device.

Overall, OpenMP is very suitable for parallelizing applications thanks to the features it includes to
fine-tune the parallelization process, as well as its support for both host and accelerator
execution. OpenMP offers great programmability because it is based on compiler directives that
can incrementally be inserted in the sequential source code to achieve better performance.
Moreover, OpenMP include a nice interoperability with CUDA, OpenCL and FPGA kernels, and
has several mechanisms to control the runtime behavior.

5. Preliminary analysis of DSML transformation:
from AMALTHEA to OpenMP

In order to make an efficient and effective use of the parallel programming models from DSMLs
transformations, it is of paramount importance that the two representations are compatible.
This section provides a preliminary analysis of the compatibility of OpenMP and AMALTHEA,
from three different angles: (1) the base language, (2) the execution model and (3) the non-
functional information that both models can define. The same analysis is currently being
conducted with CAPELLA and OpenMP. This analysis, not included in this deliverable, is following
the same reasoning as the one presented here.

5.1. Base Language
In the automotive and railway domains, C and C++ are the most widely used languages. The
Motor Industry Software Reliability Association has even developed specific guidelines, MISRA C
(Hatton, 2007) and MISRA C++ (Motor Industry Software Reliability Association and others,
2008), meant to promote safety best practices for automotive software, are accepted worldwide
for developing safety-critical software in C and C++. Additionally, the AUTOSAR C++ Coding
Guidelines (AUTOSAR, 2017) have been created by AUTOSAR to support the development of
adaptive platform components that must complain with the stringent functional safety
requirements of ISO 26262 (ISO, 2011) using modern C++. All considered PPM (OpenMP, OmpSs,
CUDA and OpenCL) are built on top of C and C++.

 18

D2.1 Model Transformation Requirements

5.2. Execution Model
To illustrate the compatibility of the current capabilities of the AMALTHEA model to describe
parallelism with OpenMP, we consider the Cholesky decomposition benchmark shown in Listing
5. Cholesky is composed of multiple invocations to four different kernels (portf_tile, trsm_tile,
gemm_tile, and syrk_tile) inside different loops controlling the flow, so the number of
invocations of each kernel depends on the number loop iterations. This listing also includes the
OpenMP directives for the parallel execution in italics, showing the data dependencies existing
between kernels (through the depend clause) and the offloading of the portf_tile kernel to a
GPU (through the target clause).

Figure 4 shows the parallelism exposed by the Cholesky benchmark in the form of the Task
Dependency Graph (TDG) extracted from the depend clauses. The orange box represents the

cholesky and the inner nodes represent the different invocations to the kernels, i.e., portf_tile,
trsm_tile, gemm_tile, and syrk_tile.

In the AMALTHEA model, Cholesky can be described as follows:

• The cholesky function corresponds to an AMALTHEA task.

• The different kernel invocations inside the cholesky function correspond to different
runnables. Since AMALTHEA does not allow including control flow within tasks, the
different loops have to be unrolled.

AMALTHEA only allows describing the parallelism among tasks. Therefore, the program must
change the system description and include the kernels invocations, i.e., the runnables, inside
tasks, and the dependencies among the tasks shall be defined using the AMALTHEA event chains
described in the constraints model (see Section 3.1.1). Furthermore, to offload the execution of
portf_tile, this runnable has to be further divided into three different runnables: host-to-gpu
copy, gpu offloading, and gpu-to-host copy (Wurst, y otros, 2019). Figure 5 shows how this
behavior can be represented in the current AMALTHEA specification. Each kernel (runnable) has
to be inserted inside a task to exploit parallelism, as well as the different runnables generated by
splitting the kernel to be offloaded to the accelerator.

void cholesky(float *A, int ts, int nt) {

 for (k = 0; k < nt; k++) {

 #pragma omp target map(to:A, from:A) depend(out:A[k][k]) device(GPU)

 potrf_tile(A[k*nt+k], ts, priority + ((nt-k)+10000));

 for (i = k + 1; i < nt; i++)

 #pragma omp task depend(in:A[k][k]) depend(out:A[k][i])

 trsm_tile(A[k*nt + k], A[k*nt + i], ts, priority + (nt-(i-k))+100);

 for (i = k + 1; i < nt; i++) {

 for (j = k + 1; j < i; j++)

 #pragma omp task depend(in:A[k][i], A[k][j]) depend(out:A[j][i])

 gemm_tile(A[k*nt + i], A[k*nt+j], A[j*nt+i], ts,

 priority + (nt-(i-k)+10));

 #pragma omp task depend(in:A[k][i]) depend(out:A[i][i])

 syrk_tile(A[k*nt + i], A[i*nt + i], ts, priority + (nt-(i-k))+100);

 }

 }

}

Listing 5. Cholesky computation (in italics, the OpenMP directives for the parallel execution is shown).

 19

D2.1 Model Transformation Requirements

Overall, the model currently defined in AMALTHEA requires using the task as an abstract
container in order to exploit parallelism. Additionally, the offloading of tasks to accelerator
devices is also modeled by splitting the runnable into three tasks (2 for copies and 1 for actual
computation). These requirements of the representation forces designers to shape their system
focusing on how the functionalities have to be parallelized, rather than what functionalities can
be parallel.

The objective of AMPERE is to incorporate model transformation techniques to automatically
generate code capable of efficiently manage the parallel execution of AMALTHEA applications at
different granularity levels, i.e., among runnables and within a runnable. This is indeed, a
possible enhancement of the AMALTHEA model, allowing parallelism within tasks, and also
between runnables of the same task. Interestingly, AMALTHEA already supports a data-model
that allows expressing the input and output data of the runnable. In that regard, there are
similarities between runnables and the OpenMP tasks that AMPERE aims to explore. Moreover,
OpenMP tasks can implement CUDA kernels that are offloaded to the GPU.

It is of paramount importance that the DSML is able to describe the execution model of the PPM.
In that regard, the scheduling model supported by OpenMP is compatible with those supported
by AMALTHEA or AUTOSAR. Despite AMALTHEA and AUTOSAR are agnostic of the underlying
scheduler, it is very common the use of limited preemption schedulers due to their good
schedulability and time predictability properties. Interestingly, OpenMP define task-based
models with a limited preemptive execution model based on task scheduling points (TSPs), i.e., a
point during the execution of a task region at which it can be suspended to be resumed later; or
the point of task completion, after which the executing thread may switch to a different task
region. Furthermore, OpenMP allows defining priority-driven schedulers to ensure that task-

potrf_tile

trsm_tile

gemm_tile

syrk_tile

Figure 4. Task Dependency graph of
the Cholesky benchmark in Error!

Reference source not found. .

Figure 5. AMALTHEA model representing the
TDG in Figure 4.

 20

D2.1 Model Transformation Requirements

critically is properly handled (Serrano, Royuela, & Quiñones, Towards an OpenMP specification
for critical real-time systems, 2018).

Table 4 summarizes the similarities of the abstractions provided by AMALTHEA and OpenMP
described above, with the objective of exploiting the parallel opportunities exposed by
AMALTHEA software.

Table 4. Matching components between the AMALTHEA and the OpenMP models.

AMALTHEA OpenMP

Task OpenMP program

Runnable task construct

Runnable offloaded to an accelerator device
(e.g., FPGA, GPU)

target construct

Runnable sequencing constraints
depend clause (associated to the task
and target constructs)

Preemption strategy supported: Non-
preemption, limited-preemption, fully
preemption

Preemption strategy supported: Non-
preemption, limited-preemption

5.3. Support for functional and non-functional requirements
OpenMP originally targets HPC systems, being its main focus to expose features for exploiting
performance. There are however several works that push the introduction of OpenMP into other
domains such as high performance real-time embedded systems. For such a purpose, the
OpenMP has to be adapted to meet functional safety and time-predictability. Several features
and techniques have been proposed targeting these aspects. Following paragraphs describe
these proposals.

5.3.1. Functional safety and correctness

The functional safety of the OpenMP specification has been analyzed (Royuela, Duran, Serrano,
Quiñones, & Martorell, 2017). This work shows that, although certain features might jeopardize
the analyzability of the system, minimal limitations on the available features together with the
use of two new directives for enabling full-system analysis even in the existence of third-party
libraries, may cover most of the possible sources of non-determinism introduced by the
specification.

Several correctness techniques aiming at delivering fault-free OpenMP systems have been
developed. These mainly target dead-locks and data-races. Regarding the former, there are
techniques that apply to different programming models, like Sherlock (Eslamimehr & Palsberg,
2014) and Chord (Naik, Park, Sen, & Gay, 2009), targeting effectiveness. More interestingly, there
is a sound technique for detecting dead-locks in C/Phtreads programs (Kroening, Poetzl,
Schrammel, & Wachter, 2016) that can be easily applied to OpenMP. Regarding the latter, there
are techniques that retrieve data races in specific subsets of OpenMP, like a fixed number of
threads (Ma, y otros, Symbolic analysis of concurrency errors in OpenMP programs, 2013), or
using affine constructs (Basupalli, y otros, 2011). More general approaches also exist, providing

 21

D2.1 Model Transformation Requirements

no false negatives (Lin, 2005), or at least providing one race when races are present (Banerjee,
Bliss, Ma, & Petersen, 2006).

Programmability (and productivity) has also been largely tackled in OpenMP. In this regard,
different works consider the use of compiler-analysis techniques for relieving the user from
defining certain information that can be automatically derived (Royuela, Duran, Liao, & Quinlan,
2012) (Royuela S. a., 2012) (Ma, y otros, Symbolic analysis of concurrency errors in OpenMP
programs, 2013). This works enhance not only the programmability of the model, but also the
correctness expectations, because of two reasons: (1) they automatize certain tasks avoid
possible human errors, and (2) they include compiler analysis techniques that can be used to
check the correctness of the system based on the users definitions.

Resiliency is also an aspect that has been considered in OpenMP. In order to enhance the
reliability of the framework, different proposals for including an error model in the specification
have been provided (Duran, y otros, 2007) (Wong, y otros, 2010). These aim at providing
programmers with the tools for recovering the system at certain points where the parallel
execution might fail. In this regard, the OpenMP specification includes one mechanism targeting
resilience (and also performance), which is cancellation. Two directives allow defining points at
which the parallel execution can be resumed and the regions to be cancelled (e.g., a parallel
region or a taskgroup region).

5.3.2. Time predictability

Although OpenMP has not been designed for providing timing guarantees, previous works have
tackled this aspect. The mainly focus on the OpenMP tasking model because the TDG resembles
the Direct Acyclic Graph (DAG) scheduling model used in real-time systems for verifying the
timing constraints of the tasks, and tackle both tied (Sun, Guan, Wang, He, & Yi, 2017) and untied
tasks (Serrano, y otros, 2015).

OpenMP lacks however the concept of time. Based on the previous works, different extensions
to the OpenMP specification regarding tasks have been proposed (Serrano, Royuela, & Quiñones,
Towards an OpenMP specification for critical real-time systems, 2018) in order to consider time:

• Recurrency: in real-time systems, tasks are either periodic or sporadic triggered by an
event. In this sense, a new clause, named event, containing the event that triggers a

task has been proposed.

• Deadlines: the criticality of a task can be related to the point in time at which the task has
to be finished. Several schedulers, like earliest deadline first (EDF) and least laxity (LL), use
this information to prioritize the tasks. A new clause, named deadline, containing the
expression that determines the time instant at which the task must finish has been
proposed.

• Time management in the runtime: the control loop used in real-time systems to trigger
tasks has to be implemented in the OpenMP runtime. An extension derived from this is
the concept of persistent task (Pop & Cohen, 2011).

The scheduling decisions are paramount for the time predictability of the system. In this sense,
the use of work-conserving schedulers is paramount to avoid incorrect or too pessimistic timing
analysis (Serrano, y otros, 2015) (Sun, Guan, Wang, He, & Yi, 2017). Work conserving policies can
be ensured within OpenMP teams, but there is a limitation when different parallel regions can
run in parallel: the specification states that the number of threads in an OpenMP team cannot

 22

D2.1 Model Transformation Requirements

vary during the life of the parallel region to which it was associated. In this regard, there is a
proposal that considers the cooperation between different OpenMP teams (different OpenMP
parallel regions) in order to avoid idle cycles in threads from one team when there is work to do
in a different team, but works at an OS-thread level and is limited but the aforementioned
limitation. The thread pool based execution model defined by OmpSs does not have this
limitation because the scheduler has flat access to all executing threads.

Amalthea addresses many concepts mentioned above. Recurrency is supported via the stimuli
model. Stimuli are responsible to activate processes, and can define different recurrency
patterns: single, periodic, variable rate, and event related, among others. Additionally, a task can
include several attributes to define its timing constraints and aspects related to the scheduling
approach like a priority, a preemption strategy and a deadline. Finally, the OS model includes
features to describe the scheduler including the particular algorithm to be used. In this regard,
AMALTHEA recognizes several different scheduling algorithms like fixed priority (e.g., deadline
monotonic, fixed priority preemptive, rate monotonic, etc.) and dynamic priority (e.g., earliest
deadline first, priority based round robin, etc.) among others, and also allows user-defined
algorithms (this information is a placeholder that needs to be implemented in the tools
consuming the model, e.g., simulators). Schedulers can be composed in a hierarchy association,
and tasks can be assigned to a specific scheduler.

Capella through the Tideal viewpoint also supports a large part of these concepts. The activation
policy of a task is modeled by an event triggering the task. The supported activation policies
include periodic and sporadic activations, but also burst (several activations in a short time, that
will repeat after a while) or sliding window (no more than a certain number of activations in a
sliding time window). A task is defined by a number of timing constraints: a priority, a deadline, a
best- and worst-case execution time. Finally, a task is allocated to a processor with a given
scheduling policy among fixed priority, rate monotonic, earlier deadline first, first in-first out,
round robin, etc. All these constraints can be used for schedulability analysis and simulation by
external verification tools, thanks to the Time4Sys platform.

5.3.3. Energy

Power and so energy management is also an aspect that has been considered in OpenMP, and
the importance of power management has already been noted (Chapman, y otros, 2009). There
is a proposal for extending the OpenMP specification in order to allow addressing the issue of
energy consumption and power management (Alessi, Thoman, Georgakoudis, Fahringer, &
Nikolopoulos, 2015). This work provides also the compiler and runtime systems that fulfill these
constraints. The extensions proposed include multi-objective optimization goals with a clause
that allow providing the goals in terms of execution time, power, energy and quality of service. A
different proposal tackles the energy consumption from a cost-per-operation point of view, and
defines extensions to model to allow defining the accuracy of the floating point operations
(Rahimi, Marongiu, Gupta, & Benini, 2013).

Amalthea allows modeling the power and frequency of the system in the hardware model, but
offers no option for defining these non-functional requirements at task level.

Capella offers the capabilities to model some of these power consumption aspects. As of today,
there is no tool that can be used to analyze this data and provide feedbacks to the developer.

 23

D2.1 Model Transformation Requirements

6. State-of-the-art synthesis tools
Synthesis methods are widely adopted techniques in multiple computing domains, including
HPC, artificial intelligence and embedded computing because of the benefits they provide: (1)
they allow non-computer experts (e.g., physicists) to effectively use diverse computing resources
to solve complex problems while hiding low-level details of the system, and (2) they facilitate the
verification of the system. Next we describe the state-of-the-art synthesis frameworks available
in the mentioned domains.

HPC

Data Flow
Language
(DFL)
(Fernández,
Beltran,
Mateo,
Patejko, &
Ayguadé,
2014)

DFL is a framework for the design and implementation of DSMLs
for distributed heterogeneous HPC systems.

It is composed of (1) a DSML that abstracts the concepts needed to
implement efficient HPC applications, and (2) a code synthesis
mechanism based on Lightweight Modular Staging (LMS) (Rompf &
Odersky, 2010) that transforms the DSML into an OmpSs
(Alejandro, y otros, 2011) program, a parallel programming model
designed at BSC.

The concepts included in DFL are: (1) buffers, abstracting the
concept of data, (2) tasks and kernels, representing computations
written in C++ and OpenCL, and (3) high-level operations, such as
map, reduce, divide and conquer, used to exploit distributed
systems without exposing low-level details.

DFL features a data-flow design matching that defined by OmpSs.
Additionally, it includes mechanisms to reuse C/C++ libraries (e.g.,
FFT (Frigo & Johnson, 1998) or VTK (Sima, 1996)) to enhance the
productivity of the system and allow compiler use already existing
libraries.

Delite
Compiler
Framework
and Runtime
(Brown, y
otros, 2011)

Delite is an end-to-end system for building, compiling and
executing DSL application on parallel heterogeneous hardware
based on LMS.

The framework (1) lifts embedded DSL applications to an
intermediate representation (IR), (2) performs generic, parallel,
and domain-specific optimizations, and (3) generates an execution
graph along with multiple kernel variants that target multiple
heterogeneous hardware devices to achieve performance
portability. The supported languages are C++, CUDA and Scala
(Odersky & Spoon, 2010), the latter supporting transformation to
OpenCL (Passerat-Palmbach, Reuillon, Mazel, & Hill, 2013).

IA

Distributed
Multiloop
Language
(DMLL)
(Brown, y
otros, 2016)

DMLL is an intermediate language based on common data-parallel
patterns that captures the necessary semantic knowledge to
efficiently target distributed heterogeneous architecture.

The language models high-level data-parallel patterns as
multiloops, a loop abstraction that captures the high-level
structure of the loop and its outputs. It also provides mechanisms

 24

D2.1 Model Transformation Requirements

to efficiently distributing the computation by partitioning data.

This language is implemented on top of the Delite framework, and
hence reuses its heterogeneous code generators for C++, CUDA
and Scala, and the compiler optimizations like code motion and
common subexpression elimination.

Halide
compiler
(Ragan-
Kelley, y
otros, 2013)

The Halide optimizing compiler synthesizes high performance
implementations using the Halide open-source DSML for complex
image processing pipelines and vision applications.

The compiler lowers a functional representation of an imaging
pipeline to imperative code. It does so by applying a series of
transformations, including flattening, vectorization and unrolling,
and then generates code via LLVM (The LLVM Compiler
Infrastructure, 2020).

The code generator produces parallel vector code for x86 and
ARM CPUs with SSE/AVX and NEON, and graphs of CUDA kernels
for hybrid CPU-GPU execution, and so targets data-parallel
models.

Rewriting
rules
(Steuwer,
Fensch,
Lindley, &
Dubach,
2015)

This is an approach for the transformation of high-level functional
expressions to high-performance OpenCL Code.

The framework receives high-level algorithmic primitives
representing a program (local/global, to indicate where to store
the results of a given function; vectorization, for exploiting SIMD
instructions, etc.) and automatically generates low-level hardware
primitives using rewrite rules (e.g. reduce rules, for reductions,
cancellation rules to eliminate operations equivalent to the
identity, etc.).

The framework targets code portability and high-performance,
and uses an OpenCL code generator to demonstrate its
capabilities.

NOVA
(Collins,
Grewe,
Grover, Lee,
& Susnea,
2014)

NOVA is a polymorphic functional language, a compiler for CPUs
and GPUs and a multi-core runtime.

The language includes support for nested parallelism, recursion
and type polymorphism, and offers high-level operations including
map, reduce and scan.

The compiler includes different optimizations that allow
generating code for a variety of target platforms, synthesizing
sequential C, parallel C and CUDA codes. The multi-core runtime
for parallel C is a straightforward implementation that creates a
number of threads and assigns an equal share of the input to the
process.

Compact
Components
(CoCo)

The CoCo framework, from the SSSA AMPERE partner, is a
component based multicore system designed targeting the
creation of visuo-haptics applications.

 25

D2.1 Model Transformation Requirements

(Ruffaldi &
Brizzi, 2016)

CoCo defines different components (i.e., callbacks, input and data
ports, declarative attributes and operators). The execution of
components is scheduled using periodic (with fixed rate) or
sporadic (based on events) approaches.

CoCo is integrated with Robot Operating System (ROS), a de-facto
standard for robotics that includes drivers, algorithms, and
developer tools.

Embedded
computing

Matlab and
Simulink
(MathWorks,
2020)

Matlab is a tool for analyzing data, developing algorithms and
creating mathematical models based on a programming language
that expresses matrix and array mathematics directly.

Simulink is a tool for running simulations, generating sequential
C/C++ code and register-transfer level (RTL) code to be executed
on an FPGA, and testing and verifying embedded systems.

Used in the automotive domain.

Gedae (The
Gedae
Development
Environment,
2020)

Gedae is a development environment that includes the Idea Text
Language and Compiler. The Idea language combines data-flow
language abstractions, high level algebra and math similar to
Malab, and control similar to UML. An additional architectural
modeling language used to create the hardware model of the
architecture. The Idea compiler targets efficiency and scalability,
as well as portability and correctness by implementing several
optimizations. It uses partitioning and mapping techniques based
on a flow graph representation of the application.

MPSoC
Application
Programming
Studio
(MAPS)
(Ceng, y
otros, 2008)

MAPS is an integrated framework for the user-directed
parallelization of C applications for MPSoCs.

The parallelization process is done in three steps: analysis,
partitioning and code emission. The first step considers sequential
C code and a description of the target platform. Then, the code is
profiled in order to extract information about possible parallel
tasks. The approach is orthogonal to the programming model.
Instead. Instead, the framework has been integrated with the TCT
framework (Urfianto, Isshiki, Khan, Li, & Kunieda, 2008), which
uses the Tightly-Coupled-Thread (TCT) programming model
(Isshiki, Urfianto, Kahn, Li, & Kunieda, 2006).

ASCET (ETAS,
2020)

ETAS ASCET-DEVELOPER is a tool for developing applications for
embedded systems. It includes graphical models, like the block
diagram and state machine editors, and textual programming
annotations, like the Embedded Software Development Language
(ESDL) and C-code editors.

The framework provides a Code Generator that translates function
models into highly efficient and safe embedded C-code (ISO26262
and IEC61508 TÜV-certified) for AUTOSAR and non-AUTOSAR
applications.

 26

D2.1 Model Transformation Requirements

Used in the automotive domain.

DaVinci suite
(Vector,
2020)

DaVinci is a tool for designing the architecture of software
components (SW-C) for AUTOSAR ECUs. The tool allows creating
interfaces, define the internal behavior with runnable entities and
link SW-C to one another. It provides special functions for
automatically generate data mapping between SW-C, as well as
the analysis of communication relationships.

It also includes a Contract-Phase Generation tool that allows
generating header files and implementation templates for C-based
applications.

Used in the automotive domain.

SCADE suite
(Ansys, 2020)

The SCADE suite is a model-based development environment used
to design critical software. It provides several capabilities,
including: (1) model-base design for data-flow and state machine
design, (2) model analysis to assess safety requirements, (3)
debugging and simulation to examine variables and build full-
system prototypes, and (4) automatic code generators for C and
Ada qualified to the highest level of safety across different
domains including automotive and rail transportation applications.

Used in the railway domain.

MagicDraw
(NoMagic,
2018)

MagicDraw is a process, architecture, software and system
modeling tool to facilitate the analysis and design of object
oriented (OO) system with support for Java, C++, C#, CL (MSIL) and
CORBA IDL programming languages.

Used in the railway domain.

IBM
Engineering
Systems
Design
Rhapsody
(Rational
Rapsody)
(Gery, Harel,
& Palachi,
2002)

Rhapsody is a solution for modeling and system design. It is
integrated with the IBM Engineering portfolio, offering a design
and test environment that supports UML, SysML, UAF and
AUTORSAR.

The key technologies offered with Rhapsody are: (1) model-code
associativity, to leverage the benefits of DMSL without losing
access to the implementation; (2) automated implementation
generation, with support for C, C++, Java, COM and CORBA; (3)
execution framework, providing APIs for the different languages,
used to perform manipulations at model abstraction level; (4)
model execution, enabling a runtime model that allows tracing
and controlling execution at a high abstraction level; and (5)
model-based testing, used for testing and failure detection.

Used in the railway domain.

APP4MC
(Eclipse
Foundation,
Inc, 2020)

On top of the Amalthea data model the APP4MC platforms offers a
variety of tools like migration, visualization tools and framework
supporting model-2-model and model-2-text transformations. The
APP4MC transformation framework encapsulates various

 27

D2.1 Model Transformation Requirements

technologies: Java, as a programing language; Eclipse extension
points, as a mechanism to load the configuration; xtend2, as a
template definition language Templates, with Java like syntax and
good support for lambda expressions, which are converted into
java code which can be debugged during execution; and Google
Guice, as a dependency injection mechanism to provide flexibility
to hook customer templates (containing specific transformation
rules) and override the definitions of platform templates.

It provides more flexibility for the developers to develop their
application e.g. built in mechanism for caching objects, clear
separation w.r.t. configuration and templates) and separate the
transformation templates as platform and customer templates.

This framework acts like a wrapper around model transformation
technologies (like Xtend2, ATXL) and provides the complete
infrastructure for easily specifying meta-models, hooking loaders
for the models, caching mechanism, defining transformation code,
building update sites or command line products and testing of the
transformation code.

Within Bosch, the framework is used to generate synthetic code
that imitates time and memory accesses described in AMALTHEA.
It also generates the necessary code and configuration stubs to
hook the synthetic code to communicate with and activate existing
AUTOSAR Adaptive applications. Within AMPERE, we will extend
this framework towards generating ROS2 nodes based on an
Amalthea model.

7. Summary and Conclusions
This deliverable analyzes different DSML and parallel programming models, considering their
capabilities to fulfill functional and non-functional requirements, as well as the mapping
possibilities between the AMALTHEA DSML and the OpenMP parallel programming model. The
deliverable also covers the state-of-the-art code synthesis tools used in different computing
domains, including HPC, AI and EC.

Moreover, this deliverable provides a preliminary analysis of the compatibility of OpenMP and
AMALTHEA, from the base language, the execution model and the non-functional information
perspective. Regarding AMALTHEA, the way parallelism is exposed might be cumbersome for
defining the parallelism exposed by models like OpenMP. Regarding OpenMP, the language lacks
features for defining non-functional requirements like energy consumption, ensuring reliability
or specifying timing requirements. Fortunately, there are several proposals that already push to
extend the language in this direction. Furthermore, there is a synergy between the
representation of the system in AMALTHEA and OpenMP by means of the TDG. This is of
paramount importance for the definition of the meta model driven abstraction that will
communicate the two components.

 28

D2.1 Model Transformation Requirements

8. Acronyms and Abbreviations
- AIT – Accelerator Integration Tool

- API – Application Program Interface

- AUTOSAR – AUTomotive Open System ARchitecture

- BSC – Barcelona Supercomputing Center

- CoCo – Compact Components

- CPU – Central Processing Unit

- DFL – Data Flow Language

- DMLL – Distributed Multiloop Language

- DSML – Domain Specific Modelling Language

- DSP – Digital Signal Processor

- EDF – Earliest Deadline First

- FPGA – Field-Programmable Gate Array

- GPU – Graphics Processing Unit

- HAD – Highly-Automated Driving

- HPC – High-Performance Computing

- IRV Internal Variable

- LL – Least Laxity

- MAPS – MPSoC Application Programming Studio

- MBSE – Model-Based Systems Engineering

- MDE – Model Driven Engineering

- MS – Milestone

- OO – Object Oriented

- OS – Operating System

- PPM – Parallel Programming Model

- RTE – Run-time environment

- SM – Stream Multiprocessor

- SW-C – Software-Component

- TDG – Task Dependency Graph

- TSP – Task Scheduling Point

- VFB – Virtual Function Bus

9. References
European Comission and AMPERE beneficiaries. (2019). Grant Agreement Description of Action.

Yan, Y., Chapman, B. M., & Wong, M. (2015). A Comparison of Heterogeneous and Manycore
Programming Models. Recuperado el June de 2020, de
https://www.hpcwire.com/2015/03/02/a-comparison-of-heterogeneous-and-manycore-
programming-models/

 29

D2.1 Model Transformation Requirements

Yu, C., Royuela, S., & Quiñones, E. (2020). OpenMP to CUDA graphs: a compiler-based
transformation to enhance the programmability of NVIDIA devices. 23rd International
Workshop on Software and Compilers for Embedded Systems. Sankt Goar, Germany.

OpenMP ARB. (Nov de 2018). OpenMP 5.0 Specification. Recuperado el June de 2020, de
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

Khronos OpenCL working group. (Apr de 2020). The OpenCL™ Specification v3.0.1-provisional.
Recuperado el June de 2020, de https://www.khronos.org/registry/OpenCL/specs/3.0-
unified/pdf/OpenCL_API.pdf

NVIDIA®. (June de 2020). CUDA C++ Programming Guide. Recuperado el June de 2020, de
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf

BSC Programming Models. (Oct de 2019). OmpSs Specification. Recuperado el June de 2020, de
https://pm.bsc.es/ftp/ompss/doc/spec/OmpSsSpecification.pdf

BOSCH. (June de 2020). AMALTHEA. Recuperado el June de 2020, de http://www.amalthea-
project.org/

Eclipse Foundation, Inc. (May de 2020). Eclipse APP4MC. Recuperado el June de 2020, de
https://www.eclipse.org/app4mc/

Hatton, L. (2007). Language subsetting in an industrial context: A comparison of MISRA C 1998
and MISRA C 2004. Information and Software Technology, 49(5), 475--482.

AMPERE. (2020). D1.1. System models requirements and use case selection.

BSC Performance Tools. (June de 2020). Extrae Documentation release 3.8.0. Recuperado el June
de 2020, de https://tools.bsc.es/doc/pdf/extrae.pdf

Filgueras, A., Gil, E., Jimenez-Gonzalez, D., Alvarez, C., Martorell, X., Langer, J., . . . Vissers, K.
(2014). OmpSs@ Zynq all-programmable SoC ecosystem. ACM/SIGDA international
symposium on Field-programmable gate arrays.

Motor Industry Software Reliability Association and others. (June de 2008). MISRA C++: 2008:
guidelines for the use of the C++ language in critical systems. Recuperado el June de 2020,
de http://tlemp.com/download/rule/MISRA-CPP-2008-STANDARD.pdf

AUTOSAR. (March de 2017). Guidelines for the use of theC++14 language in critical andsafety-
related systems. Recuperado el June de 2020, de
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-
03/AUTOSAR_RS_CPP14Guidelines.pdf

ISO. (2011). 26262-1: 2011 Road Vehicles--Functional Safety--Part 1: Vocabulary. Berlin: ISO.

AMPERE. (2020). D5.1. Reference parallel heterogeneous hardware selection.

Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-Bille, F., Heitkämper, P., . . . Lange, K.
(2009). AUTOSAR-- A Worldwide Standard is on the Road. 14th International VDI Congress
Electronic Systems for Vehicles, Baden-Baden.

Sailer, A. (2014). Timing Simulation of Multi-Core Systems. Recuperado el June de 2020, de
https://www.timing-architects.com/fileadmin/user_upload/knowledge/autosar-timing-
simulation.pdf

 30

D2.1 Model Transformation Requirements

Peraldi-Frati, M.-A., Blom, H., Karlsson, D., & Kuntz, S. (2012). Timing modeling with autosar-
current state and future directions. Design, Automation \& Test in Europe Conference \&
Exhibition (DATE).

Wurst, F., Dasari, D., Hamann, A., Ziegenbein, D., Sañudo, I., Capodieci, N., . . . Burgio, P. (2019).
System Performance Modelling of Heterogeneous HW Platforms: An Automated Driving
Case Study. 22nd Euromicro Conference on Digital System Design (DSD).

Serrano, M. A., Royuela, S., & Quiñones, E. (2018). Towards an OpenMP specification for critical
real-time systems. International Workshop on OpenMP.

Fernández, A., Beltran, V., Mateo, S., Patejko, T., & Ayguadé, E. (2014). A Data Flow Language to
Develop High Performance Computing DSLs. Fourth International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance Computing.

Rompf, T., & Odersky, M. (2010). Lightweight modular staging: A pragmaticapproach to runtime
code generation and compiled DSLs. Proceedings of the ninth international conference on
Generative programmingand component engineering, GPCE.

Alejandro, D., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Martorell, X., & Planas, J. (2011).
OmpSs: A Proposal for Programming Het-erogeneous Multi-Core Architectures. Parallel
Processing Letters, 21(2), 173--193.

Sima, V. (1996). Algorithms and lapack-based software for subspace identifica-tion. Proceedings
of the IEEE International Symposium on Computer-Aided Control System Design.

Frigo, M., & Johnson, S. G. (1998). FFTW: An adaptive software architecture for the FFT.
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing.

Brown, K. J., Sujeeth, A. K., Lee, H., Rompf, T., Chafi, H., Odersky, M., & Olukotun, K. (2011). A
heterogeneous parallel framework for domain-specific languages. International
Conference on Parallel Architectures and Compilation Techniques.

Odersky, & Spoon. (2010). Programming in Scala, Second Edition. Artima.

Passerat-Palmbach, J., Reuillon, R., Mazel, C., & Hill, D. R. (2013). Prototyping parallel simulations
on manycore architectures using Scala: A case study. International Conference on High
Performance Computing \& Simulation (HPCS).

Brown, K. J., Lee, H., Romp, T., Sujeeth, A. K., De Sa, C., Aberger, C., & Olukotun, K. (2016). Have
Abstraction and Eat Performance, Too: Optimized Heterogeneous Computing with
Parallel Patterns. IEEE/ACM International Symposium on Code Generation and
Optimization (CGO).

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., & Amarasinghe, S. (2013). Halide: a
language and compiler for optimizing parallelism, locality, and recomputation in image
processing pipelines. Acm Sigplan Notices, 48(6), 519--530.

The LLVM Compiler Infrastructure. (June de 2020). Recuperado el June de 2020, de llvm.org

Ruffaldi, E., & Brizzi, F. (2016). Coco - A framework for multicore visuo-haptics in mixed reality.
International Conference on Augmented Reality, Virtual Reality and Computer Graphics.

 31

D2.1 Model Transformation Requirements

Steuwer, M., Fensch, C., Lindley, S., & Dubach, C. (2015). Generating performance portable code
using rewrite rules: From high-level functional expressions to high-. ACM SIGPLAN
Notices, 50(9), 205--217.

Collins, A., Grewe, D., Grover, V., Lee, S., & Susnea, A. (2014). NOVA: A functional language for
data parallelism. Proceedings of ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming.

MathWorks. (June de 2020). MATLAB & Simulink. Recuperado el June de 2020, de
www.mathworks.com

The Gedae Development Environment. (June de 2020). Recuperado el June de 2020, de
www.gedae.com

Ceng, J., Castrillón, J., Sheng, W., Scharwächter, H., Leupers, R., Ascheid, G., . . . Kunieda, H.
(2008). MAPS: an integrated framework for MPSoC application parallelization.
Proceedings of the 45th annual Design Automation Conference.

ETAS. (June de 2020). ASCET-DEVELOPER - Software Products & Systems. Recuperado el June de
2020, de https://www.etas.com/en/products/ascet-developer.php

Vector. (June de 2020). DaVinci Developer. Recuperado el June de 2020, de
https://www.vector.com/int/en/products/products-a-z/software/davinci-developer/

Ansys. (June de 2020). Scade. Recuperado el June de 2020, de
https://www.ansys.com/products/embedded-software

Royuela, S., Duran, A., Serrano, M. A., Quiñones, E., & Martorell, X. (2017). A Functional Safety
OpenMP* for Critical Real-Time Embedded Systems. International Workshop on OpenMP.

Royuela, S., Duran, A., Liao, C., & Quinlan, D. J. (2012). Auto-scoping for OpenMP tasks.
International Workshop on OpenMP.

Royuela, S. a. (2012). Compiler automatic discovery of OmpSs task dependencies. International
Workshop on Languages and Compilers for Parallel Computing.

Ma, H., Diersen, S. R., Wang, L., Liao, C., Quinlan, D., & Yang, Z. (2013). Symbolic analysis of
concurrency errors in OpenMP programs. 42nd International Conference on Parallel
Processing.

Wong, M., Klemm, M., Duran, A., Mattson, T., Haab, G., de Supinski, B. R., & Churbanov, A.
(2010). Towards an error model for OpenMP. International Workshop on OpenMP.

Duran, A., Ferrer, R., Costa, J. J., Gonzàlez, M., Martorell, X., Ayguadé, E., & Labarta, J. (2007). A
proposal for error handling in OpenMP. International Journal of Parallel Programming,
35(4), 393--416.

Kroening, D., Poetzl, D., Schrammel, P., & Wachter, B. (2016). Sound static deadlock analysis for
C/Pthreads. 31st IEEE/ACM International Conference on Automated Software Engineering.

Eslamimehr, M., & Palsberg, J. (2014). Sherlock: scalable deadlock detection for concurrent
programs. Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering.

Naik, M., Park, C.-S., Sen, K., & Gay, D. (2009). Effective static deadlock detection. IEEE 31st
International Conference on Software Engineering.

 32

D2.1 Model Transformation Requirements

Ma, H., Diersen, S. R., Wang, L., Liao, C., Quinlan, D., & Yang, Z. (2013). Symbolic analysis of
concurrency errors in OpenMP programs. 42nd International Conference on Parallel
Processing.

Lin, Y. (2005). Static nonconcurrency analysis of OpenMP programs. International Workshop on
OpenMP.

Banerjee, U., Bliss, B., Ma, Z., & Petersen, P. (2006). A theory of data race detection. Workshop
on Parallel and distributed systems: testing and debugging.

Basupalli, V., Yuki, T., Rajopadhye, S., Morvan, A., Derrien, S., Quinton, P., & Wonnacott, D.
(2011). ompVerify: polyhedral analysis for the OpenMP programmer. International
Workshop on OpenMP.

Sun, J., Guan, N., Wang, Y., He, Q., & Yi, W. (2017). Real-time scheduling and analysis of openmp
task systems with tied tasks. IEEE Real-Time Systems Symposium (RTSS).

Serrano, M. A., Melani, A., Vargas, R., Marongiu, A., Bertogna, M., & Quinones, E. (2015). Timing
characterization of OpenMP4 tasking model. International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES).

Pop, A., & Cohen, A. (2011). A stream-computing extension to OpenMP. Proceedings of the 6th
International Conference on High Performance and Embedded Architectures and
Compilers.

Alessi, F., Thoman, P., Georgakoudis, G., Fahringer, T., & Nikolopoulos, D. S. (2015). Application-
level energy awareness for OpenMP. International Workshop on OpenMP.

Chapman, B., Huang, L., Biscondi, E., Stotzer, E., Shrivastava, A., & Gatherer, A. (2009).
Implementing OpenMP on a high performance embedded multicore MPSoC. IEEE
International Symposium on Parallel \& Distributed Processing.

Rahimi, A., Marongiu, A., Gupta, R. K., & Benini, L. (2013). A variability-aware OpenMP
environment for efficient execution of accuracy-configurable computation on shared-FPU
processor clusters. International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ ISSS).

Isshiki, T., Urfianto, M. Z., Kahn, A. U., Li, D., & Kunieda, H. (2006). Tightly coupled thread: A new
design framework for multiprocessor system-on-chips. Design Automation Symposium.

Urfianto, M. Z., Isshiki, T., Khan, A. U., Li, D., & Kunieda, H. (2008). A multiprocessor SoC
architecture with efficient communication infrastructure and advanced compiler support
for easy application development. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences.

Gery, E., Harel, D., & Palachi, E. (2002). Rhapsody: A complete life-cycle model-based
development system. International Conference on Integrated Formal Methods.

NoMagic. (April de 2018). MagicDraw. Recuperado el June de 2020, de
https://www.nomagic.com/products/magicdraw

Roques, P. (2017). Systems Architecture Modeling with the Arcadia Method: A Practical Guide to
Capella. Elsevier.

 33

D2.1 Model Transformation Requirements

Voirin, J.-L. (2017). Model-based System and Architecture Engineering with the Arcadia Method.
ISTE Press - Elsevier.

Object Management Group. (April de 2019). UML Profile for MARTE. Recuperado el July de 2020,
de https://www.omg.org/spec/MARTE/

Programming Models @BSC. (June de 2020). OmpSs@FPGA. Recuperado el June de 2020, de
https://pm.bsc.es/ompss-at-fpga

Wen, Y., Wang, Z., & O'boyle, M. F. (2014). Smart multi-task scheduling for OpenCL programs on
CPU/GPU heterogeneous platforms. 21st International conference on high performance
computing (HiPC).

	1. Executive Summary
	2. Introduction
	3. Model driven engineering overview
	3.1. AMALTHEA and AUTOSAR
	3.1.1. General Description
	3.1.2. Parallelism exposed

	3.2. CAPELLA
	3.2.1. General Description
	3.2.2. Parallelism exposed

	4. Parallel programming models
	4.1. CUDA
	4.2. OpenCL
	4.3. OpenMP
	4.4. OmpSs
	4.5. Summary: Programming models productivity

	5. Preliminary analysis of DSML transformation: from AMALTHEA to OpenMP
	5.1. Base Language
	5.2. Execution Model
	5.3. Support for functional and non-functional requirements
	5.3.1. Functional safety and correctness
	5.3.2. Time predictability
	5.3.3. Energy

	6. State-of-the-art synthesis tools
	7. Summary and Conclusions
	8. Acronyms and Abbreviations
	9. References

