
D2.5 Evaluation of performance-aware model
transformations

Version 1.0

Documentation Information

Contract Number 871669

Project Webpage https://www.ampere-euproject.eu/

Contractual Deadline 30.06.2023

Dissemination Level Public (PU)

Nature Report

Authors Sara Royuela, Adrian Munera, Oriol Pascual (BSC)

Contributors Tommaso Cucinotta, Gabriele Ara (SSSA)

Reviewer Thomas Vergnaud, Olivier Constant (TRT)

Keywords Optimisation, Performance, OpenMP Taskgraph

AMPERE project has received funding from the European Union’s Horizon 2020
research and innovation programme under the agreement No 871669.

Ref. Ares(2023)4593120 - 03/07/2023

https://www.ampere-euproject.eu/

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

Change Log

Version Description Change

V0.1 Initial version with the original deliverable description.

V0.2 First complete version.

V0.3 Reviewers comments and suggested changes.

V1.0 Reviewers’ comments included.

ii

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

Table of Contents

1 Executive Summary . 1

2 Introduction . 2

3 Modeling parallelism in the AMPERE use-cases . 3
3.1 Predictive cruise control (PCC) . 3
3.2 Obstacle detection and avoidance system (ODAS) . 4

4 Use cases evaluation . 6
4.1 Environmental setup . 6
4.2 Performance speedup . 6

4.2.1 PCC . 6
4.2.2 ODAS . 10

5 Conclusions . 12

6 Acronyms and Abbreviations . 13

7 References . 14

iii

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

1 Executive Summary
This deliverable covers the work done during the fourth and last phase of the AMPERE project withinWP2. The
deliverable spans 9 months’ work, as defined in the Grant Agreement amended in December 2021 [1] (from
month 34 until month 42), and includes the work done in Task 2.5, Performance-aware model transformation
validation to reach milestone 4 (MS4). Concretely, the deliverable covers the activities conducted within WP2
towards validating the multi-criteria optimisation model transformations addressing performance, developed
in Task 2.3, Performance-aware transformation techniques, and presented in deliverable D2.3 [2].
AtMS4, Task 2.5 has to provide an evaluation of the performance optimisation strategy applied to the AMPERE
use cases. To that end, the task has devoted efforts to:

• augment the PCC andODASmodels providedby partners BOSCHandGTSI (formerly THALIT) respectively,
with the augmentations described in D2.3 for expressing parallelism and heterogeneity, including the
support for function specializations, and

• analyze the effects on performance of using OpenMP to parallelize AMALTHEA tasks with the AMPERE
use cases.

Tasks 2.5 has been carried out successfully, and all objectives of MS4 have been reached and documented in
this deliverable.

1

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

2 Introduction
WP2 aims to develop ameta parallel programming abstraction independent of the underlying processor archi-
tecture, capable of capturing all system functional and non-functional requirements, as well as incorporating
the parallel semantics required to enable an efficient model transformation, optimized for performance, tim-
ing, resiliency, security, and energy-efficiency. Figure 1 depicts the AMPERE software tools workflow, with the
different components and the communication between them. WP2 is enclosed in the yellowish box on the
left.

Application resilience
properties

(replication)

SLG

(annotate)

“Optimal”
configuration

(final TDG)

Models

Generated
source code

Compiler

Binaries

Existent
source code

Energy

Time

Multi-criteria

Profiling

Initial configuration
(mapping and
frequencies)

Application energy
properties

(energy envelope)

Energy
estimation

Time/contention
estimationFPGA

analysis

Application time
properties

(periods, deadlines)

New
configurations

Optimization

Analysis

Smart
counters

Traces

TDG

Execute

Figure 1: The AMPERE software ecosystem with WP2 work highlighted

This deliverable, including task T2.5, corresponds to the performance evaluation of the model augmentations
and model-to-code transformations defined to express fine-grained parallelism within processes (or tasks) of
an AMALTHEA model. In particular, the use of OpenMP to orchestrate the parallel execution of AMALTHEA
runnables.

2

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

3 Modeling parallelism in the AMPERE use-cases
Use-case providers BOSCH and THALIT/GTSI have developed the base versions of the PCC and the ODAS use
cases, respectively. These versions allow exploiting accelerators (FPGA and GPU) for some components, but
they do not exploit parallelism within AMALTHEA tasks. To that end, the base models have been augmented
with the annotations described in D1.5 [3] to express parallelism and heterogeneity based on specializations.
This chapter describes how parallelism and heterogeneity is exploited in AMPERE within each of the use cases
of the project, and what are the reasons for the use of such configurations.

3.1 Predictive cruise control (PCC)

The PCC use case is formed by four different components, as shown in figure 3: the Powertrain control or
Engine Control Management (ECM), the Adaptive Cruise Control (ACC), the Predictive Cruise Control (PCC) and
the Traffic Sign Recognition (TSR). The components have different behaviors with respect to the number and
the granularity of the runnables that compose them:

• ECM has several tasks with several runnable calls within each task, and all runnables show very thin
granularity.

• TSR has a reduced number of tasks that run sequentially one after the other, and all tasks are composed
of a unique runnable call, meaning that inter-runnable parallelism is not possible in this component.

• PCC has a very reduced number of tasks with a reduced number of runnables inside and a quite thin
granularity in all of them.

• ACC has a reduced number of tasks, with some tasks running very limited number of runnables with thin
granularity, but some others run a quite large amount of coarser-grained runnables.

(a) ECM tasks.

(b) Workflow overview.

(c) PCC tasks. (d) ACC tasks. (e) TSR tasks.

Figure 2: PCC use case and its modeling with AMALTHEA tasks.

3

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

Although OpenMP can be used within all components, analysis performed during the development of the
OpenMP runtime for predictability have shown that, although our proposed runtime handles much thinner
task granularities than the original runtime, it still has a limit when reaching granularities smaller than 10−3

seconds if performance is to be obtained out of the parallelization. This results were preliminary shown in
D4.2 [4], and recently presented in an article accepted in the IEEE Transactions on Parallel and Distributed Sys-
tems (TPDS) [5]. Based on this know-how, we performed an exploratory analysis on the scalability of OpenMP
using an x86 machine, applying OpenMP to all components (except for TSR, because of its sequential nature)
and executing with 1 and 8 threads. The results, shown in Table 1, demonstrate that the ECM and the PCC
components have too thin granularity to be exploited with OpenMP. ACC, instead, shows good scalability for
the majority of the tasks.

Table 1: Exploratory analysis of the scalability of the PCC use-case, when using 1 and 8 threads, in the NVIDIA Jetson AGX
(time inms).

Component AMALTHEA task 1 thread 8 threads

ECM

task_200ms 0.023573 0.042087
task_1000ms 0.023088 0.048195
task_2ms 0.023169 0.049279
task_50ms 0.023292 0.042001
task_1ms 0.023173 0.055221
task_5ms 0.023258 0.047233
angle_sync 0.023610 0.034236
task_20ms 0.024481 0.034234
task_100ms 0.024352 0.063528
task_10ms 0.024718 0.034559

PCC prediction 0.035444 0.034830
trajectory_optimizer 0.010112 0.026043

ACC

input 0.052142 0.067312
output 0.019944 0.031140

preprocessing 11.754811 2.131537
perception 13.582399 1.908297
world_model 11.706874 1.748688

control_behavior 1.415694 0.367440

Given the previous results, the PCC use case provided by BOSCH has been modified to parallelize the ACC
component by adding a Parallelism custom property. The results are shown in Section 4.2.1

3.2 Obstacle detection and avoidance system (ODAS)

The ODAS use case is formed of 4 different phases, as depicted in figure 3 that occur sequentially one after the
other, :

• Phase 1 - Data processing. In this phase, three Amalthea tasks run in parallel, one for each sensor, i.e.,
camera, lidar and radar. In the case of the camera, there are actually two tasks, one executing in the CPU
(the one that gathers data) and one executing in the GPU (the one processing the data). The tasks are
composed of one-to-three runnable calls, and these runnables cannot be parallelized as they represent
sequential phases on the data collected.

• Phase 2 - Sensor data fusion. In this phase, one Amalthea task executes three runnables that synchro-
nize the data received from the sensors, associates them and recognizes objects. This steps must run
sequentially.

• Phase 3 - Tracking. This phase executes one Amalthea task with one Unscented Kalman Filter (UKF) for

4

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

each object detected in the previous step. These processes can run in parallel as they are independent
among them.

• Phase 4 - Collision checking. This phase contains one Amalthea task that runs one unique runnable.

(a) Workflow overview.

(b) Phase 1 tasks. (c) Phase 3 tasks.

(d) Phase2 tasks.

(e) Phase 4 tasks.

Figure 3: PCC use case and its modeling with AMALTHEA tasks.

Given the analysis of the system, the only component that exposes inter-runnable parallelism is the tracking
module, which can run the UKFs in parallel. The corresponding AMALTHEA task has been augmented with a
Parallelism custom property. The results are shown in Section 4.2.1

5

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

4 Use cases evaluation
The performance capabilities of the AMPERE software (SW) ecosystem are evaluated on top of two differ-
ent processor architectures: (1) the NVIDIA Jetson AGX Xavier [6], and (2) the Xilinx Zynq UltraScale+ MPSoC
ZCU102 [7]. Parallelism and heterogeneity is accomplished in two different ways depending on the architec-
ture. While the GPU is exploited through OpenMP, the FPGA is exploited with FRED. The components of the
AMPERE ecosystem for CPU+GPU exploitation are defined in D2.3 [2], while the components for CPU+FPGA
exploitation are defined in D4.3 [8]. Following the same structure, the evaluation of the two boards is also split
in two different deliverables, i.e., D2.5 (this document) evaluates the performance of the CPU+GPU support in
AMPERE, while D4.4 [9] evaluates the performance of the CPU+FPGA support.

4.1 Environmental setup
This section introduces the environmental setup used for the evaluation of the AMPERE software ecosystem
with regard to performance.

• Hardware architecture. The NVIDIA Jetson AGX Xavier platform was introduced in D5.1 [10]. As a sum-
mary, the board counts with an octal-core NVIDIA Carmel ARMv8.2 CPU @2.26GH with 32GB 256-bit
LPDDR4x and a 512-core Volta GPU.

• Software. The board counts with the software presented in D6.5 [11], which includes the agx2 5.10.104-
tegra OS, CUDA 11.4, ROS2 version Foxy and the LLVM 17.0 extended as described in D2.3 [2].

• Use-cases configurations. The use cases evaluated are those proposed in the AMPERE project and de-
scribed in D1.5 [3]:

◦ The Predictive Cruise Control (PCC) use case is an heterogeneous and adaptable system that
presents runnables exclusively for CPU execution, runnables that have specializations for CPU and
FPGA, and runnables with specializations for CPU and GPU. In the Jetson, two configurations are
tested: (1) a complete CPU version, and (2) a version that has CPU runnables (the exclusive CPU
ones and those with CPU/FPGA specializations) and GPU runnables (those with CPU/GPU special-
izations).

◦ The Obstacle Detection and Avoidance System (ODAS) use case, instead, exposes either GPU
runnables, within the camera pipeline for object recognition, or CPU runnables (all the rest). Con-
sequently, there is only one configuration regarding the target platform.

4.2 Performance speedup
The performance speedup of the system ismeasured by executing the different configurations of the use-cases
with 1, 2, 4, 6 and 8 threads. The results presented next are extracted using the−O2 optimization flag during
compilation, and exploit the Taskgraph framework based on the TDG representation presented in D2.2 [12] and
refined in D2.3 [2]. The figure are computed as the average of 20 executions of the applications running for 20
seconds.

4.2.1 PCC
Table 2 shows the characterization of the tasks in each component of the PCC use case, including the total num-
ber of tasks, the number of tasks that show inter-runnable parallelism, and the granularity of the runnables.
The only component showing enough granularity to exploit inter-runnable parallelism is the ACC. The TDGs
that represent the tasks of this component are shown in figure 4.

6

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

Table 2: Characterization of the tasks in the PCC use case.
AMALTHEA tasks Tasks w. inter-runnable parallelism Granularity

ACC 6 6 104

ECM 22 22 101

PCC 3 2 101

TSR 8 1 101-102

run3 run4 run5 run6 run7 run8 run9 run10 run11 run12

(a) Preprocessing.
run13 run14 run15 run16 run17 run18 run19 run20 run21 run22 run23 run24 run25 run26 run27 run28 run29 run30 run31 run32 run33 run34 run35 run36 run37 run38 run39 run40 run41

(b) Perception.
run42 run43 run44 run45 run46 run47 run48 run49 run50 run51 run52 run53 run54 run55 run56 run57 run58 run59 run60 run61 run62 run63 run64 run65 run66 run67 run68 run69 run70 run71 run72 run73 run74 run75 run76 run77 run78 run79

(c) World model.
run80

run81 run83 run86 run93 run94 run97 run98

run82

run85

run84

run89

run87

run88

run90 run91

run92

run95 run96 run80_div

run81_divrun89_div run93_div run94_div run97_div run98_div

run82_div

run85_div

run83_div run84_divrun86_div run87_div

run88_div

run90_div run91_div

run92_div

run95_div run96_div acc_databroker

(d) Control behavior.

run1

run2

(e) Input.

run99

run100 run101

(f) Output.

Figure 4: TDGs of the AMALTHEA tasks from the ACC component of the PCC use case.

4.2.1.1 CPU execution

The performance speedup of the PCC use case when running all components in the CPU is presented in fig-
ure 5. All components reach around 1.5x speedup for all threads, showing slight variations when increasing the
numbers of threads due to the overhead of handling parallelism. This seems to be the limit for exploiting fine
grain parallelism in this machine due to the competition with other threads handled by ROS that are in charge
of executing all the AMALTHEA tasks of the system. The two tasks that suffer more the overhead of increasing
the number of threads are perception and world model. These tasks present a high number of runnables in
parallel task, achieving their best speedup with 4 threads. The input and output tasks are not show because
the do not obtain speedup neither slowdown.

To understand the possibilities of the platform to obtain performance out of the ACC component, we run
experiments with this component isolated. The performance speedup obtained in the ACC AMALTHEA tasks
with respect to running the whole use case concurrently are shown in figure 6. As expected, the perception
runnable obtains up to 3x speedup with 8 threads, which proves (1) the capabilities of OpenMP to exploit fine
grained parallelism in highly-parallel automotive components, and (2) confirms the fact the the PCC use-case
already exploits a great amount of parallelism at the AMALTHEA task level, hence handled by the OS, and there
are not enough resources in the tested processor architecture to allowOpenMP fully exploit the parallel nature
of some AMALTHEA tasks.

The results show how OpenMP is able to efficiently parallelize AMALTHEA tasks that expose fine-grained par-
allelism, and evince the need for highly parallel architectures to support the advanced automotive systems
represented with the PCC use case.

7

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

Figure 5: Performance speedup of the PCC use-case when increasing the number of threads.

Figure 6: Performance speedup of the ACC component when running in isolation with respect to run the
whole PCC use-case.

4.2.1.2 CPU + GPU execution

The PCC use case presents GPU specializations for the TSR component, where all tasks can run in the device.
Overall, in this evaluation we are exploiting inter-runnable parallelism in the ACC component, and heteroge-
neous execution in the TSR component. This should leave more resources in the CPU for the competition
between OpenMP threads and ROS threads.
The impact of using the GPU to execute the TSR component is shown as the impact on the component moved
to the GPU, i.e., TSR, and the impact on the component run in the CPU, i.e., ACC. The impact on the ECM and
PCC components is not shown because the instrumentation of this tiny-grained components would add too
much overhead and the results would not be representative of the actual behavior of the use case.

• The TSR chart in figure 7 shows that most of the tasks (i.e. resizing, classification, detection and seg-
mentation_tsr) have worse performance in the GPU than in the CPU, and this is because the granularity
of the tasks is very thin (10µs), and the overhead of offloading surpasses the benefits of the accelera-

8

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

tor. In the case of the gaussian_filter task, there is a considerable gain when increasing the number of
threads because in the all-CPU version, these configurations were suffering important penalties due to
the overhead.

• The ACC chart in figure 8 shows instead performance speedup with respect to the all-CPU version in the
perception task, as more CPU resources are free and the execution does not suffer from high overhead
when increasing the number of threads.

Figure 7: Performance speedup of the TSR component running in the GPU when increasing the number of
threads.

Figure 8: Performance speedup of the ACC component with TSR component running in the GPU when
increasing the number of threads.

For illustration purposes, we tested the overhead of offloading work with OpenMP to the GPU on the NVIDIA
Jetson Xavier AGX board, with the target directive using a simple matrix multiplication kernel that multiplies
twomatrices and stores the result in a thirdmatrix, to later check if the result is an identitymatrix. A sequential
implementation is tested in the CPU and a GPU accelerated version is tested in the GPU. The time duration of
the two implementations for the first execution, and for the subsequent executions, are shown in figure 9a
and figure 9b, respectively. In the first execution, the GPU only starts showing better performance when the

9

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

matrix is bigger than 256x256 double elements, which corresponds to a computation time in the order of 104µs
(notice that this is the order of magnitude of the ACC component that we parallelized). After that, instead,
matrices of 64x64 double elements already get benefit, which are in the order of 102µs (which generally is still
bigger than the order of magnitude in the TSR component). These results endorse the design decisions about
parallelization and the results for GPU execution obtained with the PCC use case.

(a) Execution time vs matrix size on first kernel execution. (b) Execution time vs matrix size on subsequent kernel
executions.

Figure 9: Overhead of offloading a matrix multiplication kernel to the GPU w.r.t. CPU execution when varying
the size of the matrix.

4.2.1.3 CPU + FPGA execution

The AMPERE toolchain has been applied to the PCC use-case, resulting in a number of different configurations
for the generated models. One of these considered the possibility to accelerate some of the runnables in the
use-case, offloading the computations to a hardware IP deployed onto an FPGA slot using FRED [13]. The op-
timization process is described in detail in deliverable D3.4 [14], along with the obtained optimization results.
Furthermore, an experimental evaluation of the methodology has been carried out, deploying the optimized
system configuration and placement on the Xilinx UltraScale+ ZCU102 board. The obtained experimental re-
sults are described in detail in deliverable D4.4 [9], showing results coming from optimizing and deploying the
use-case models, as well as a number of randomly generated real-time DAG scenarios. The experimentation
was carried out with scenarios optimized both for minimum power consumption, and for maximizing the min-
imum relative slack, namely maximizing the tolerance of the configuration w.r.t. possible glitches in worst-case
execution time estimations and measurements.
From these experimentation, we can conclude that our AMPERE end-to-endmethodology succeeds in optimiz-
ing the design and run-time configuration of parallel real-time software components for highly heterogeneous
platforms, including FPGA acceleration. The methodoloy is capable of providing optimized configurations of
the scenarios, so to deploy minimum-power and/or robust configurations that intelligently take advantage of
FPGA accelerators as needed, given the non-functional timing, power and resilience requirements in place.

4.2.2 ODAS
The AMALTHEA task where parallelism is exploited through OpenMP is the one included in the Tracking or
UKF component. The TDG of this task is shown in figure 10, showing 60 runnables or OpenMP tasks, namely
UKF_XX, that can run in parallel.
The performance speedup of the ODAS use case, running the camera data processing pipeline in the GPU as
a requirement, and the rest of the components in the CPU is presented in figure 11. In this case, the speedup

10

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

Figure 10: TDG of the AMALTHEA task implementing the 60 UKFs of the ODAS use case (with zoom-in in a
region with three of them).

reaches a top value of 2.6x when using 4 threads, and remains between 1.5x and 2x for the rest of the config-
urations. This happened also with the PCC use case; ROS threads are probably competing with the OpenMP
threads to get resources.

Figure 11: Performance speedup of the ODAS use-case when increasing the number of threads.

To understand the possibilities of OpenMP in the Jetson processors, we run the experiments with the UKF
component isolated. The results, shown in Figure 12, exhibit the same behavior as for the PCC case, in which
the architecture does not allow to exploit all the parallelism exposed by the application. Still, OpenMP shows
benefit in parallelizing fine-grained tasks up to the maximum parallelism of 8 threads for the UKF.

Figure 12: Performance speedup of the UKF component when running in isolation with respect to run the
whole ODAS use-case.

11

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

5 Conclusions
This deliverable presents the final evaluation of the AMPERE ecosystem on top of the PCC and the ODAS use
cases using the NVIDIA Jetson AGX Xavier platform. The results show how OpenMP is able to expose inter-
runnable parallelism within AMALTHEA tasks, although it shows limitations in parallelizing very fine-grained
tasks in automotive components such as the ECM from the PCC use case. Similarly, a computation to be of-
floaded to the GPU must have sufficient computational workload so the overhead of offloading does not sur-
pass the benefits of the accelerator. These facts are to be understood by system designers, to decide where to
expose parallelism and which type of device is better. However, the multi-criteria optimizer described in D3.4
is capable of considering all these factors when deciding what to offload and what to leave as running on the
CPU.
Further tests simulate a system with more resources by temporarily removing from the PCC and the ODAS
use cases those AMALTHEA tasks that do not exploit parallelism. The results show that OpenMP can obtain a
performance speedup beyond the one shown when running the complete use cases. This is so because ROS
threads implementing AMALTHEA tasks already occupy resources and they have to compete with OpenMP
threads to execute their jobs. Based on this fact, we can conclude that the computing needs of the use cases
that are being deployed in advanced automotive and railway systems push to the maximum the computing
capabilities of current parallel embedded architectures, and the use of different levels of parallelism can help
in reducing the worst case execution times.
The objectives of Task 2.5, Performance-aware model transformation validation, which produces this deliv-
erable, have been met at MS4 by providing a successful evaluation of the performance optimization strategy
applied to the AMPERE use cases.

12

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

6 Acronyms and Abbreviations
ACC Adaptive Cruise Control
CPU Central Processing Unit

D Deliverable
ECM Engine Control Management
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
IEEE Institute of Electrical and Electronics Engineers
MDE Model-Driven Engineering

MPSoC Multiprocessor System-On-Chip
MS Milestone
NFR Non-Functional Requirement

ODAS Obstacle Detection Avoidance System
OpenMP Open Multi-Processing

OS Operating System
PCC Predictive Cruise Control
ROS Robot Operating System
SLG Synthetic Load Generator
T Task

TPDS Transactions on Parallel and Distributed Systems
TDG Task Dependency Graph
TSR Traffic Sign Recognition
UKF Unscented Kalman Filter
WP Work Package

13

D2.5 - Evaluation of performance-aware model transformations
Version 1.0

7 References
[1] European Commission and AMPERE beneficiaries, “Grant Agreement Description of Action,” 2021.
[2] AMPERE, “Deliverable D2.3, Programming model extensions and the multi-criteria performance-aware

component,” September 2022.
[3] ——, “Deliverable D1.5,Metamodel-driven abstraction extensions andUse case enhancements,” Septem-

ber 2022.
[4] ——, “Deliverable D4.2, Independent run-time energy support, and predictability, segregation and re-

silience mechanisms,” March 2021.
[5] C. Yu, S. Royuela, and E. Quiõnes, “Taskgraph: A LowContentionOpenMPTasking Framework,” IEEE Trans-

actions on Parallel and Distributed Systems, 2023.
[6] NVIDIA, “Jetson AGX Xavier,” 2023. [Online]. Available: https://www.nvidia.com/es-es/

autonomous-machines/embedded-systems/jetson-agx-xavier/
[7] “Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit,” https://www.xilinx.com/products/boards-and-kits/

ek-u1-zcu102-g.html, 2023.
[8] AMPERE, “Deliverable D4.3, Integrated run-time energy support, and predictability, segregation and re-

silience mechanisms,” September 2022.
[9] ——, “Deliverable D4.4, Evaluation of run-times,” June 2023.
[10] ——, “Deliverable D5.1, Reference parallel heterogeneous hardware selection,” June 2020.
[11] ——, “Deliverable D6.5, Final release of the AMPERE ecosystem,” June 2023.
[12] ——, “DeliverableD2.2, First release of themeta parallel programming abstraction and the single-criterion

performance-aware,” March 2021.
[13] M. Pagani, A. Balsini, A. Biondi, M. Marinoni, and G. Buttazzo, “A linux-based support for developing real-

time applications on heterogeneous platforms with dynamic FPGA reconfiguration,” in Proceedings of the
30th IEEE International System-on-Chip Conference (SOCC 2017), September 2017, pp. 5–8.

[14] AMPERE, “Deliverable D3.4, Evaluation of multi-criteria optimizations,” June 2023.

14

https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-agx-xav ier/
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-agx-xav ier/
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

	1 Executive Summary
	2 Introduction
	3 Modeling parallelism in the AMPERE use-cases
	3.1 Predictive cruise control (PCC)
	3.2 Obstacle detection and avoidance system (ODAS)

	4 Use cases evaluation
	4.1 Environmental setup
	4.2 Performance speedup
	4.2.1 PCC
	4.2.2 ODAS

	5 Conclusions
	6 Acronyms and Abbreviations
	7 References

