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1 Executive Summary  
This deliverable covers the work done during the first phase of the project within WP3. The 
deliverable spans 9 months’ work (including 3 extra months with respect of the Grant Agreement 
[1] due to the COVID19 situation), and provides results of the work done in Task 3.1 “Multi-criteria 
optimisation requirements specification” for milestone 1 (MS1). 

The document provides the analyses and consolidation of the requirements related to the multi-
criteria optimization associated to the non-functional constraints considered in AMPERE (i.e., 
energy-efficiency, time-criticality and fault tolerance), and describes the initial techniques that will 
be considered in the scope of the development of the work package for later milestones and tasks 
(i.e., energy models, timing and schedulability analysis and software and hardware resilient 
methods) and that better fit parallel execution.  

The target at MS1 is the evaluation of energy models, time and schedulability and resilient 
techniques that better fit parallel execution. The first milestone of Task 3.1 has been carried out 
successfully, and all objectives of MS1 have been reached and documented in this deliverable. 
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2 Introduction  
AMPERE addresses the challenge of fully exploiting the benefits of performance demanding 
emerging applications (such as artificial intelligence or big data analytics), which can only be met 
on parallel platforms composed of different heterogeneous computing resources, whilst 
guaranteeing the energy efficiency, real-time response and resiliency non-functional 
requirements, required by cyber-physical applications. 

The goal of WP3 is thus to investigate and provide a set of analyses, which are able to perform a 
multi-criteria optimization at development phase, guiding the model-driven to programming 
model transformation and ensuring that non-functional constraints are fulfilled, and devise 
execution models and methods to guarantee their fulfilment at run-time, considering the 
underlying runtimes and platforms. 

In particular, and in what respects to energy-efficiency, WP3 will (i) investigate the energy 
consumption components present in the selected parallel platform(s) and how are impacted by 
the different power management knobs and run-time decisions; (ii)  devise methods to extract 
information on (1) workload specification, (2) non-functional constraints included in the parallel 
programming model and (3) hardware platform characteristics impacting on energy; and (iii) 
develop energy-aware execution models based on previous information that push the selected 
parallel platform(s) introspection capabilities beyond what is currently feasible. 

With respect to time predictability, WP3 will (i)investigate and develop predictable execution 
models of the selected parallel platforms to simplify timing and schedulability analysis, including 
optimizations in the placement of functionality into cores, offloading operations, DPR operations 
and computation on accelerators; and (ii) develop timing and schedulability analyses for the 
proposed scheduling algorithms and heterogeneous execution models developed in WP4.  

With respect to fault tolerance, WP3 will improve the system’s fault tolerance, considering 
reliability and availability aspects resulting in improved system’s dependability.   

This document provides the initial baseline for the work of WP3, in particular the requirements 
related to the multi-criteria optimization associated to the non-functional constraints considered 
in AMPERE (i.e., energy-efficiency, time-criticality and fault tolerance). Requirements are listed 
one-by-one together with the following attributes: 

• ID: the requirement identifier. 
• Topic: the main system the requirement is applied to. Requirements have been analysed 

and consolidated in the following topics: Timing, Energy, Communication, Security 
• Subtopic: the category of the requirement.  
• Name: the friendly name of the requirement 
• Description: the body of the requirement, with the associated metrics. 
• Means for verification: the way this requirement will be evaluated within the project. 
• Type: the type of requirement defined according to the MoSCoW Model:  

o MUST HAVE (M): Defines a requirement that has to be satisfied for final solution to 
be acceptable. It is mandatory. 

o SHOULD HAVE (S): This is a high-priority requirement that should be included if 
possible. 
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o COULD HAVE (C): This is a desirable or nice-to-have requirement, but the solution 
will still be accepted if the functionality is not included. 

o WOULD LIKE (W): This represents a requirement that stakeholders would like to 
have but have agreed will not be implemented within the scope of this project 

• Implementer: the WP responsible of the requirement capture within the project  
• Source: Indicates where this requirement comes from. 

The document also puts together the initial techniques that will be considered in the scope of the 
development of the work package for later milestones and tasks (i.e., energy models, timing and 
schedulability analysis and software and hardware resilient methods). These models will consider 
predictable high performance as the main goal, and will be based on techniques that better fit 
parallel execution, addressing the baseline requirements.  

The relation of this deliverable with other WP is shown in the next Table 1, considering deliverables 
and tasks that are involved with the studies performed for completing this deliverable. 

Table 1. Relationship between D3.1 and other deliverables. 

Deliverable Leader Task Description 

D1.1 THALIT T1.1 System models  requirements  specification  and  use  case selection 

D2.1 BSC T2.1 Model transformations requirements 

D4.1 SSSA T4.1 Run-time requirement specification 

D5.1 SYSGO T5.1 Reference parallel heterogeneous hardware selection 

2.1 Document structure 
This document is organized in 7 sections: 

- Section 1 provides an Executive Summary of the document. 
- Section 2 introduces briefly the context and gives a main view of the structure of the 

document. 
- Section 3 gives a general overview of the constraints related to energy-efficiency, and the 

initial energy models and optimization strategies to be considered within AMPERE.  
- Section 4 gives a general overview of the constraints related to time-criticality, and the 

initial timing and scheduling analysis to be considered within AMPERE.  
- Section 5 gives a general overview of the constraints related to fault-tolerance, and the 

initial hardware and software resilient methods to be considered within AMPERE.  
- Section 7 provides a summary and conclusion of the document. 
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3 Energy Models  
This section summarizes the requirements related to energy-efficency, collected from the work in 
WP1 (Task T1.1 “System model requirement specification and use case definition” [2]) as well as 
from WP2 (Task 2.1 “Model transformation requirements specification” [3]), WP4 (Task 4.1 “Run-
time requirement specification” [4]) and the platforms from WP5 (Task 5.1 “Platform Selection” 
[5]).  

To design an energy-efficient AMPERE eco-system, we need to track energy usage during the 
execution of an AMPERE system, and the data gathered about energy consumption is analysed 
during the offline optimization stage. 

The energy consumption of software components running on complex modern CPUs that are in 
the focus of the AMPERE high-performance embedded application use-cases, cannot simply be 
modelled using simplistic approaches relying solely on knowledge of the configuration of the DVFS 
tunables of the platform (frequency of the CPU cores), accompanied by the workload/idle ratio 
over each CPU core. Indeed, during the execution of a workload that at a high-level is keeping a 
CPU core continuously busy processing, the energy consumption may vary in non-negligible ways 
depending on what parts of the CPU pipeline are actively engaged vs stay idle, due to the 
instructions actually in execution, and how long the cores stall waiting for data from the main 
memory due to cache misses, for example. This can be highlighted with a simple experiment, as 
reported in the figure below. 

  

Figure 1. Execution of benchmarks in the LITTLE and big cores of ARM big.LITTLE ODROID-XU3 board. 

We have run a number of common CPU-intensive application benchmarks on one of the LITTLE 
and big cores of an ARM big.LITTLE ODROID-XU3 board. Albeit not being the UltraScale+ board 
selected for the project, this board possesses interesting non-SMP features in its architecture, 
constituting an excellent challenge for investigating soft real-time guarantees vs energy efficiency 
trade-offs. On the left and right subplots, we can see what power consumption (on the Y axis) 
corresponds to each of the possible OPPs/frequencies (on the X axis) configurable for the LITTLE 
and big island, respectively. As evident, the curves corresponding to various application workloads 
(continuous lines), as well to synthetic data-intensive computational hogs imposing approximate 
percentages of cache misses (dashed lines), obtain different power consumptions at equal OPP 
configurations. This underlines the importance of tracking, modelling and estimating the energy 
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consumption of applications. Clearly, a real application may dynamically switch among different 
types of computations, making the power consumption estimation task even more challenging, 
and calling for on-line solutions that can adaptively refine initially rough estimations monitoring 
the applications at run-time. 

At run-time, the energy usage of the system may be tracked by estimating the energy usage with 
a linear model, which is trained during the offline stage. The overall picture is presented in Figure 
2. The platform specific countable hardware and software events (A) and the state of the software-
tunable energy-relevant parameters, such as DVFS configuration (B) are used as input for the 
offline-trained model (C), which delivers an energy prediction (D) – i.e., an estimation of the 
current usage – which is used at runtime to impact the software-tunable parameters (B). 

 
Figure 2. A schematic overview of the interaction of the energy consumption model. 

3.1 Model Rationale 
The energy usage of the system is given by the power usage and the time it is spent. 
Fundamentally, the power used by the system consists of a static (leakage) component, and a 
dynamic component. The dynamic component depends on the activity in the hardware, e.g., as 
highlighted with alphas in Figure 3. Taking these two components into account, the power usage 
of the system can be estimated as shown below. Each signal alpha is assigned a weight w that 
represents its contribution to the system power use, which are summed up with the static power 
for each signal. 

 
Figure 3. Signaling activity represented by different alphas in a mockup-system. 
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 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 =  ∑𝛼𝛼𝑖𝑖 ∗  𝑤𝑤𝑖𝑖 + 𝑃𝑃𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸  (1) 

However, it is unfeasible to analyse the system at this granularity. First, because this low-level 
information is typically not available for the commercial platforms used in the system, and 
secondly that the time to estimate would make the multi-criteria optimization pass of the AMPERE 
framework unbearably slow. These two aspects mainly affect the offline phase of the energy-
efficiency optimization. Furthermore, it is not possible to track the system at this granularity at 
runtime, making the monitoring of individual components during execution impossible. 

For this reason, as is commonly done, the system is abstracted from individual signals into larger 
functional units. At this point, the power estimation can still be done in a similar way, using the 
below equation. In this case, a new weight w is assigned to each functional unit alpha (as opposed 
to the previous signals), depending on its contribution to the system power usage. Importantly, 
while the equations look similar, the abstraction into functional units alpha vastly reduces the 
number of terms in the summation, making it feasible to fit a linear model to obtain the weights 
(offline), and run inference on the model at runtime. In particular the latter becomes feasible in 
terms of the low overhead runtime-monitoring (KPI3.2) only at this level. For the offline training 
(fitting) of the model, abstracting the system into larger functional units has one additional 
advantage. While information about individual signals in commercial platforms are not available, 
information about functional units, e.g., ALU, SIMD engine, etc., are readily available. 

 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 =  ∑𝛼𝛼𝑖𝑖 ∗  𝑤𝑤�𝑖𝑖 + 𝑃𝑃𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸 (2) 

The final form of the model is given by the below equation. It assumes that power is linear in 
functional units, as well as that all relevant functional units can be tracked. 

𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ �𝑠𝑠𝑖𝑖 ∗ �𝑃𝑃𝑔𝑔𝑠𝑠𝐸𝐸𝑔𝑔𝑔𝑔 − 𝑃𝑃𝑙𝑙𝑔𝑔𝑠𝑠𝑙𝑙𝑠𝑠𝑔𝑔𝑔𝑔�+ 𝑃𝑃𝑙𝑙𝑔𝑔𝑠𝑠𝑙𝑙𝑠𝑠𝑔𝑔𝑔𝑔 + ∑ (1 − 𝑠𝑠𝑖𝑖) ∗ 𝛼𝛼𝑗𝑗 ∗ 𝑣𝑣2 ∗ 𝑓𝑓 ∗ 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝑔𝑔𝑁𝑁𝐸𝐸
𝑗𝑗=0 �𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑔𝑔𝐸𝐸

𝑖𝑖=0   (3) 

Based on this information, the functional units of the selected platforms, the Xilinx UltraScale+ and 
the NVIDIA Xavier (see D5.1) are identified. Both commercial platforms used within the project 
feature a multi-core ARMv8 CPU as host processor. These processors can be abstracted into 
multiple functional units, e.g., ALU, SIMD engine, etc. To track the activity within each functional 
unit, the performance counters can be used [6]. The activity in the ARM cores can be tracked by 
using the ARM Performance Monitoring Unit Version 3 (PMUv3). The PMUv3 provides the 
infrastructure to count a number (3 on Xavier, 6 on US+) of hardware events (e.g., bus access, 
completed cycles, etc.). These events are primarily intended for performance monitoring 
purposes, but provide access to information about the functional units of the processor necessary 
for energy/power estimation. 

ID REQ-ENE-01 
Topic Energy Efficiency 
Subtopic Energy Modeling 
Name Access to Hardware Events for Energy Modeling 
Description The AMPERE eco-system must support the tracking of hardware event 

counters, and ensure that counter access does not conflict between 
different parts of the AMPERE runtime. 

Means for verification Demonstrators 
Type M 
Implementer(s) WP3 
Source Platform 

 



         

9 

 

D3.1 Multi-criteria optimization requirements 
Version  1.1 

If there is competition for different parts of the runtime to use the performance monitoring unit, 
it may be worth exploring if, during the offline optimization phase, changes in the program 
execution pattern (e.g., memory vs compute bound segments) can be identified, and hooks to the 
energy optimization runtime can be injected into the code. Performing such on-demand 
adjustments to the software-controlled mechanisms for energy management may also serve to 
reduce the runtime overhead. 

3.2 On the importance of representative counters 
The first step is to identify which counters that correlate well with the energy usage of the system. 
By tracking these counters, the behaviour of the most relevant functional units are implicitly 
identified. For this purpose we use a technique similar to [7] 

. An example for two benchmarks and a set of counters is shown in Figure 4. 

 
Figure 4. Correlation of hardware events (from performance counters) to energy usage of the NVIDIA Xavier. 

Figure 4 shows one row for each out of the eight cores, for two benchmarks. Each column 
represents a counter. Counters with a high positive correlation to power usage are highlighted in 
green, counters with a high negative correlation are highlighted in red, and all other counters with 
low correlation are highlighted in bright yellow. As can be seen in the figure, there are a number 
of counters with high correlation to energy, which we include in the model. In particular, this 
includes the L1 data cache refill event, the number of memory accesses, the completed cycles, and 
the unnamed counter 0x27, which is triggered with SIMD-heavy computation is executed on the 
Xavier. 

How important the selection of relevant counters is can be seen in the following two traces, shown 
in Figure 5 and Figure 6. The figure shows in orange the externally measured power usage of the 
system, while the blue line shows the estimated power based on the model. The trace shows the 
execution of several Rodinia benchmarks [8]. In Figure 5, the model does not include the SIMD 
event counter, and as can be seen, especially between the 5000 and 6000 ms marks, the estimated 
power does not follow the actual power usage very well. If instead the model is retrained with the 
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SIMD event counter included, as shown in Figure 6, the estimated power follows the true value 
more closely. 

 
Figure 5. The estimated energy use (blue) and the ground truth (orange line, yellow measurement error) without 

including the SIMD unit. 

 
Figure 6. The estimated energy use (blue) and the ground truth (Orange line, yellow measurement error), including 

the SIMD unit. 

At this point, it is tempting to imagine that the system can be well-modelled by devising synthetic 
workloads that stress each individual functional unit independently. For this purpose, we devise 
synthetic workloads ALU, FLOAT, MEM, BRANCH, in single- and multi-threaded configurations, 
which we use to train the model. However, as can be seen in Figure 7, under these circumstances 
the estimated power deviates significantly from the actual power. This behaviour is specific to the 
more complex processors in the commercial platforms, but works well for simpler processing units, 
as the RISC-V-based processing elements (PE) in HERO1, using only synthetic workloads. This 
indicates that a combination of these approaches can potentially be used to cover all units of all 
platforms within the project. 

                                                           
1 HERO, the Heterogeneous Research Platform, is a programmable many-core accelerator system developed at ETHZ. 
It consists of a 64-bit RISC-V host processor and one or more clusters of simple RISC-V cores (processing elements, PE) 
for parallel processing. This system can be used, as per the WP5 description, as a research platform within the project 
to explore solutions in hardware that are not available in the commercial platforms.  For more information, please see 
https://arxiv.org/pdf/1712.06497.pdf 



         

11 

 

D3.1 Multi-criteria optimization requirements 
Version  1.1 

 
Figure 7. The bad energy estimation (blue) compared to the ground truth (Orange) when training the model with 

synthetic benchmarks. 

An issue that was up until now not discussed, but that is also relevant to achieve the good 
estimates previously presented is the power gating of the processor.  

When the processor is power gated, it ideally uses no dynamic or leakage power, and therefore 
greatly impacts the overall energy usage of the system. Unfortunately, in the case of the Xavier 
processors, gating cannot be controlled by software, and as such must be included in the model to 
achieve a good estimate.  

Thankfully, this information can be derived from the cycle counter of the PMU. In Figure 8, the 
cycle counter for a benchmark execution is shown on the Y axis, as measured at each point in time 
(X axis). During this execution, the operating point has been fixed, i.e., the frequency remains 
constant, yet, as shown in the Figure, there is large variance in the number of recorded active 
cycles. At the points in time where few cycles are recorded, the processor has been power gated. 
In the shown example, this happens automatically and corresponds to the phases of the executing 
program when a significant portion of time is spent waiting on data from memory.  Thus, even if 
the system is configured for a fixed operating point, low-level hardware features within the 
platform is constantly optimizing the energy usage, turning of unused components in real-time 
and without explicit management from software.  

ID REQ-ENE-02 
Topic Energy Efficiency 
Subtopic Energy Modeling 
Name Access to Active Cycle Counter 
Description The AMPERE eco-system must support the tracking of the Active Cycle 

Counter, to ensure software-awareness of hardware controlled events, 
such as power gating. 

Means for verification Demonstrators 
Type M 
Implementer(s) WP3 
Source Platform 
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Figure 8 The cycle counter for a sequence of Rodinia benchmarks, while keeping the processor executing at a fixed 

frequency. 

By correctly tracking the effects of power gating in the energy estimates using the active cycles 
counter from the PMU, the energy usage of the system can be well estimated, as shown in Figure 
9. The figure shows the data from the board’s current/voltage monitor as an orange line, the 
quantization error associated with it as a yellow band, and the estimation shown as a blue line. On 
average, the estimated energy usage (blue) gives the same result as the current/voltage monitor, 
while at each individual point in time the average deviation is within +/-15%.  

 
Figure 9. Well-estimated energy usage (blue) compared to ground truth (Orange, yellow measurement error), when 

Accounting for clock gating through monitoring the active cycle counter. 

3.3 Impact to Offline Optimization Stage 
The training of the runtime model requires representative training data. Our goal is to provide a 
pre-trained model that does not require re-training of this model when adopting the system, 
however, the ability to do that should be present in the AMPERE eco-system. This is in line with 
the envisioned profiling and adaptation “backloops” in the AMPERE multi-criteria optimization 
design flow, as shown in Figure 10. 
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Figure 10. The envisioned flow for the multi-critiera optimization phase. 

 

ID REQ-ENE-03 
Topic Energy Efficiency 
Subtopic Multi-criteria Optimization Pipeline 
Name Profiling and Adaptation Mechanisms for Multi-Criteria Optimization 
Description The AMPERE multi-criteria optimization pipeline must establish means 

for profiling and subsequent adaptations during the optimization 
phase. 

Means for verification Test 
Type M 
Implementer(s) WP3 
Source Programming Model, Platform 

 

To perform initial energy-efficiency optimization, there must be an offline model for the initial 
energy estimation. While the presented model is able to provide very accurate estimations of the 
energy use, it currently relies on information that is only available online, i.e., the impact of 
hardware-controlled clock gating, as well as the activity in different hardware units. As part of the 
offline optimization stage, an important aspect is to determine how the heterogeneity of the 
system can be best used, and as such, it must be possible to understand what the energy 
requirements are for different workloads on the different processing devices (e.g., CPU, GPU, …) 
within the system. For this purpose, a simplified model can be used that assumes the worst-case 
clock-gating behaviour (always on), or a heuristic model that encompasses information about 
computational patterns that trigger gating behaviour, e.g., memory intensive code regions. This 
simplifies the input data to the model, but requires more details of the energy impact of different 
code constructs and instructions to be included in the platform model. As a starting point, a model 
such as [9] can be used. By including separate energy-performance pairs for each DVFS operating 
point in the platform model, a safe minimum frequency, i.e., minimum energy-level, can be 
assigned during the offline optimization stage. By including this information for all processing 
devices, heterogeneity of the system can be explored from an energy-efficiency perspective in the 
offline optimization phase. 
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ID REQ-ENE-04 
Topic Energy Efficiency 
Subtopic Platform Model 
Name Specification of Hardware Energy Characteristics in Platform Model 
Description The AMPERE platform models used for the optimization pipeline must 

include energy-characteristics for the supported platforms, to allow 
offline estimation of energy requirements for different code constructs. 
This ensures the possibility for energy analysis without having to resort 
to profiling. 

Means for verification Inspection 
Type M 
Implementer(s) WP3 
Source Platform, Programming Model 

 

It should therefore be the goal of the offline optimization stage to provide safe upper bounds for 
the energy-usage of the system, which can be improved with runtime information. As part of the 
work in Task 4.2, ETHZ will explore techniques that allow tighter bounds to be generated from 
offline information (system model + code) with respect to online data (hardware events counted). 
This allows the employment of techniques such as (energy) slack reclamation and borrowing 
mechanisms [10, 11, 12] to be used to further improve the energy efficiency at runtime, based on 
the online optimization. During the offline stage, we envision energy budget information to be 
encoded for each task, such that the AMPERE runtime can further optimize during execution. 

 

ID REQ-ENE-05 
Topic Energy Efficiency 
Subtopic Modelling Framework 
Name Encoding of Non-Functional Energy Requirements in Application Models 
Description Executable runnables and generated code must, where applicable, 

have an energy budget per activation assigned to them. This ensures 
that a) analysis can verify that non-functional requirements are upheld, 
and b) enable further optimization at runtime by reclaiming unused 
energy budgets. 

Means for verification Demonstrators 
Type M 
Implementer(s) WP3 
Source Platform 
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4 Timing and Schedulability Analysis  
This section summarizes the requirements related to timing and schedulability analysis, collected 
from the work in WP1 (Task T1.1 “System model requirement specification and use case definition” 
[2]) as well as from WP2 (Task 2.1 “Model transformation requirements specification” [3]), WP4 
(Task 4.1 “Run-time requirement specification” [4]) and the platforms from WP5 (Task 5.1 
“Platform Selection” [5]).  

4.1 Time-criticality requirements 
The use cases considered by AMPERE (railway obstacle detection and avoidance system and 
automotive intelligent predictive cruise control), are representative of cyber-physical systems, 
where the interactions between the computing systems and the environment are made through 
control loops, which have clear semantics of a sense-compute-actuate chain. Due to the critical 
nature of some of these control loops, the AMPERE eco-system must guarantee that the response 
time of the critical chains is within specified bounds, imposed by the requirements of the external 
controlled physical system.   

ID REQ-TIM-01 
Topic Timing and Schedulability Analysis 
Subtopic Control loops 
Name Types of control loops 
Description The AMPERE eco-system must support control loops which consist of 

event-chains and/or computation graphs, with end-to-end response 
time requirements. 

Means for verification Use case demonstrators 
Type M 
Implementer(s) WP2,WP3,WP4 
Source Use cases, programming models 

 
ID REQ-TIM-02 
Topic Timing and Schedulability Analysis 
Subtopic Control loops 
Name Real-time requirements 
Description The AMPERE eco-system must support applications with hard real-time 

requirements. 
Means for verification Use case demonstrators 
Type M 
Implementer(s) WP2, WP3, WP4 
Source Use cases 

 

4.2 Models of computation 
At the same time, AMPERE considers a Model Driven Engineering (MDE) approach, where the non-
functional requirements are mapped in higher-level modelling frameworks (AMPERE considers 
AMALTHEA and CAPELLA) and transformed into the underlying parallel programming model 
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(OpenMP in AMPERE). This transformation needs to take into consideration the timing properties 
of applications, and guarantee the fulfilment of the related requirements, under different models 
of computation [13, 14, 15, 16], approaches which are going to be developed in task 4.3.  
 

ID REQ-TIM-03 
Topic Timing and Schedulability Analysis 
Subtopic Schedulability Analysis 
Name Graph Analysis 
Description The AMPERE eco-system must support schedulability analysis of 

application graphs/chains. 
Means for verification Use case demonstrators 
Type M 
Implementer(s) WP3 
Source Use cases, Programming model 

 
ID REQ-TIM-04 
Topic Timing and Schedulability Analysis 
Subtopic Schedulability Analysis 
Name Publish-subscribe Analysis 
Description The AMPERE eco-system must support schedulability analysis of 

application components interacting using communication and 
synchronization primitives with publish-subscribe semantics. 

Means for verification Use case demonstrators 
Type M 
Implementer(s) WP3 
Source Use cases, Programming model 

4.3 Runtime impact 
From the runtime perspective, AMPERE considers a hierarchical approach [17], where the 
computing platform can be abstracted to applications and operating systems, through a 
hypervisor, providing isolation between different applications executing in the same computing 
node. Therefore, analysis tools need to include the concept of multiple levels of mapping and 
scheduling, which need to be also considered in the run-time mechanisms.  
 

ID REQ-TIM-05 
Topic Timing and Schedulability Analysis 
Subtopic Schedulability Analysis 
Name Mixed-criticality scheduling 
Description The AMPERE eco-system should support multi-core schedulability 

analysis of hierarchical schedulers, with mixed-criticality constraints. 
Means for verification Use case demonstrators 
Type M 
Implementer(s) WP3 
Source Use cases 
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Moreover, in order to guarantee that there is enough computational capacity available for critical 
tasks, the AMPERE eco-system needs to support reservation-based approaches [18] and runtime 
regulation mechanisms (e.g. MemGuard [19]). 
 
 

ID REQ-TIM-06 
Topic Timing and Schedulability Analysis 
Subtopic Schedulability Analysis 
Name Analysis of reservation/regulation schedulers  
Description The AMPERE eco-system must support schedulability analysis of 

reservation-based schedulers and SW-based regulation. 
Means for verification Use case demonstrators 
Type M 
Implementer(s) WP3 
Source Use cases, Runtime 

4.4 Execution time 
Real-time schedulability tests for multi-core systems assume that the worst-case execution time 
(WCET) for the computation (code fragments) is given [20]. Therefore, in order to be able to derive 
the schedulability analysis of the applications, and provide the required guarantees, AMPERE must 
provide the appropriate mechanisms and analysis for determining execution time.  
 

ID REQ-TIM-07 
Topic Timing and Schedulability Analysis 
Subtopic Worst-case execution time 
Name Worst-case execution time analysis 
Description The AMPERE eco-system should support worst-case execution time 

(WCET) analysis.  
Means for verification Inspection 
Type S 
Implementer(s) WP3 
Source Use cases 

 
Most timing analysis methodologies focus on determining the worst-case execution time (WCET) 
of a program fragment, in order to use this value to determine a safe upper bound on the execution 
time. Relying on the existence of an accurate model of the timing behaviour of the underlying 
hardware is challenging, particularly when considering parallel and heterogeneous platforms [21]. 
Task 4.3 will consider approaches, that integrate both the analysis of the application structure with 
measurement-based techniques and determine the execution time of those paths by executing 
the application on the target hardware platform (an approach as in Figure 10) [22], as well as the 
use of regulation techniques, which reduce interference and therefore analysis pessimism [19].  

 
ID REQ-TIM-08 
Topic Timing and Schedulability Analysis 
Subtopic Worst-case execution time 
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Name Worst-case execution time measurements 
Description The AMPERE eco-system must support execution time profiling with 

performance counters (see REQ-ENE-01).  
Means for verification Inspection 
Type M 
Implementer(s) WP5 
Source Use cases 

4.5 Analysis of HW acceleration 
AMPERE will use high-performance parallel platforms with heterogeneous components (CPU, 
GPU, and FPGA), particularly Off-The-Shelf, which challenge both the extraction of timing 
information as well as the knowledge of the details of the hardware contention mechanisms. The 
AMPERE eco-system must therefore consider both static and dynamic allocation of accelerators, 
with co-scheduling approaches to reduce interference [23], more dynamic and measurement-
based approaches to execution time analysis, and offload-based schedulability analysis techniques 
[24].   

ID REQ-TIM-09 
Topic Timing and Schedulability Analysis 
Subtopic Analysis of HW acceleration 
Name Response-time analysis for accelerators 
Description The AMPERE eco-system must support response-time analysis for both 

dynamically-configured and static hardware accelerators deployed on 
GPUs and FPGA fabrics. 

Means for verification Test 
Type M 
Implementer(s) WP3 
Source Use cases, Platform 

 

ID REQ-TIM-10 
Topic Timing and Schedulability Analysis 
Subtopic Analysis of HW acceleration 
Name Analysis of multiple offloading schemes 
Description The AMPERE eco-system must support schedulability analysis of 

software tasks that issue both synchronous and asynchronous 
hardware acceleration requests. 

Means for verification Test 
Type M 
Implementer(s) WP3 
Source Use cases, Platform 

 

ID REQ-TIM-11 
Topic Timing and Schedulability Analysis 
Subtopic Analysis of HW acceleration 
Name Profiling of accelerators 
Description The AMPERE eco-system should support the profiling of GPU and FPGA 

hardware accelerators in terms of execution time, number of 
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bus/memory transactions, and resource demand, as well as FPGA 
reconfiguration times 

Means for verification Test 
Type M 
Implementer(s) WP3 
Source Use cases, Platform 

 

The optimization techniques used in AMPERE shall take into account timing constraints for FPGA-
based acceleration requests via worst-case timing analysis. The analysis to be used in AMPERE will 
extend the one presented in [23], which works by studying the worst-case response times of SW-
tasks issuing HW acceleration requests.  

For the purpose of the analysis, it is crucial to distinguish between synchronous and asynchronous 
acceleration requests. In the former case, in [23] SW-tasks are modelled as segmented self-
suspending tasks, I.e., sequential computations where execution phases are interleaved to 
suspension phases. The latter correspond to acceleration requests and their duration depend on 
the time taken complete an acceleration, which includes (i) the reconfiguration time, (ii) 
contention delays, and (iii) the actual execution time of the accelerator. The contention delays 
change depending on whether the FPGA reconfiguration interface (FRI) supports pre-emption or 
not. 

Under the scheduling infrastructure described in [23], the following theorem can be proved (as a 
special case of Theorem 1 in [23]) to ensure predictable worst-case delays when requesting the 
execution of a HW-task under preemptive FRI management. 

Consider an arbitrary acceleration request ℛ𝑠𝑠 related to HW-task 𝜏𝜏𝑠𝑠𝐻𝐻 issued by a SW-task 𝜏𝜏𝑖𝑖. Let 
𝑠𝑠𝑙𝑙 = 𝑠𝑠(𝜏𝜏𝑠𝑠𝐻𝐻) be the FPGA slot to which 𝜏𝜏𝑠𝑠𝐻𝐻 is allocated to. Under preemptive FRI management, the 
maximum delay incurred by ℛ𝑠𝑠 is upper-bounded by 

 𝛥𝛥𝑠𝑠𝑃𝑃 = ∑ max
𝜏𝜏𝑏𝑏
𝐻𝐻∈ℋ(𝜏𝜏𝑗𝑗)

𝜏𝜏𝑗𝑗≠𝜏𝜏𝑖𝑖 �𝛥𝛥𝑏𝑏𝐸𝐸𝑙𝑙𝑁𝑁𝐸𝐸 + 𝑟𝑟𝑏𝑏� (4) 

where 

 𝛥𝛥𝑏𝑏𝐸𝐸𝑙𝑙𝑁𝑁𝐸𝐸 = �𝐶𝐶𝑏𝑏
𝐻𝐻 if 𝑠𝑠(𝜏𝜏𝑏𝑏𝐻𝐻) = 𝑠𝑠𝑙𝑙

0 otherwise,
 (5) 

• 𝑟𝑟𝑏𝑏 denotes the worst-case reconfiguration time of HW-task 𝜏𝜏𝑏𝑏𝐻𝐻,  
• ℋ(𝜏𝜏𝑗𝑗) denotes the HW-tasks associated to SW-task 𝜏𝜏𝑗𝑗, and  
• 𝐶𝐶𝑏𝑏𝐻𝐻 denotes the worst-case execution time of HW-task 𝜏𝜏𝑏𝑏𝐻𝐻. 

The term 𝛥𝛥𝑏𝑏𝐸𝐸𝑙𝑙𝑁𝑁𝐸𝐸 represents the interference experienced by 𝜏𝜏𝑠𝑠𝐻𝐻 due to slot contention originated by 
the execution of 𝜏𝜏𝑏𝑏𝐻𝐻. 

Under non-preemptive FRI management, a bound 𝛥𝛥𝑠𝑠𝑃𝑃  on the delay experienced by a HW-task is 
provided by Theorem 2 in [23]. Consider an arbitrary acceleration request ℛ𝑠𝑠 for HW-task 𝜏𝜏𝑠𝑠𝐻𝐻 
issued by a SW-task 𝜏𝜏𝑖𝑖. Let 𝑠𝑠𝑙𝑙 = 𝑠𝑠(𝜏𝜏𝑠𝑠𝐻𝐻) be the slot to which 𝜏𝜏𝑠𝑠𝐻𝐻 is allocated to. Under non-
preemptive FRI management, the maximum delay incurred by ℛ𝑠𝑠 is upper-bounded by 
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 𝛥𝛥𝑠𝑠𝑁𝑁𝑃𝑃 = 𝛥𝛥𝑠𝑠𝑃𝑃 + 𝑁𝑁𝐻𝐻𝑙𝑙𝑁𝑁𝑠𝑠𝑚𝑚 × 𝑟𝑟𝑙𝑙𝑁𝑁𝑠𝑠𝑚𝑚 (6) 

where 

 𝑁𝑁𝐻𝐻𝑙𝑙𝑁𝑁𝑠𝑠𝑚𝑚 = |{𝜏𝜏𝑏𝑏𝐻𝐻 ∈ 𝛤𝛤𝐻𝐻 :  𝑠𝑠(𝜏𝜏𝑏𝑏𝐻𝐻) = 𝑠𝑠𝑙𝑙}| (7) 

With 𝛤𝛤𝐻𝐻 being the set of all HW-tasks, and 

 𝑟𝑟𝑙𝑙𝑁𝑁𝑠𝑠𝑚𝑚 = max
𝜏𝜏𝑏𝑏
𝐻𝐻∈𝛤𝛤𝐻𝐻

{𝑟𝑟𝑏𝑏 :  𝑠𝑠(𝜏𝜏𝑏𝑏𝐻𝐻) ≠ 𝑠𝑠𝑙𝑙}. (8) 

The term 𝑁𝑁𝐻𝐻𝑙𝑙𝑁𝑁𝑠𝑠𝑚𝑚 represents the number of HW-tasks allocated to slot 𝑠𝑠𝑙𝑙. The scheduling 
infrastructure from [23] ensures that each of them can be directly blocked due to non-preemptable 
FPGA reconfiguration by at most 𝑟𝑟𝑙𝑙𝑁𝑁𝑠𝑠𝑚𝑚 units of time, representing the largest reconfiguration time 
of the HW-tasks allocated on the other slots. 

In the context of the AMPERE project we plan to extend this analysis framework to support both 
parallel SW-tasks and asynchronous acceleration. 

 To address parallel SW-tasks it is essential to avoid a direct transformation to segmented self-
suspending tasks as, without extensions or third-party algorithm, they are capable of modeling 
sequential computations only. The delay analysis shall also be extended to cope with additional 
contention in serving acceleration requests caused by parallelism.  

A new modeling and analysis approach is instead needed to cope with asynchronous acceleration. 
Indeed, when an asynchronous acceleration request is issued, the processor can serve 
computations and then later wait for the completion of the accelerated task. To address these 
scenarios, we are working on a new analysis framework based on a new task model focused on 
event-dependent suspensions. An example instance of the new model is sketched in the following 
figure. 

 
   Figure 11. Example of event-dependent suspensions. 

Here, SW-tasks are modelled via a directed acyclic graph whose nodes denote sequential 
computations to be executed on the same processor and edges denoted precedence constraints 
that are satisfied with a variable but bounded delay. The first node labelled with “b” is a special 
node that denotes the task release event. The variable delays that satisfy the precedence 
constraints can be used to model pending HW acceleration requests, while nodes that are not on 
the same path of the graph can be used to express computations on the processor that occur while 
a HW acceleration is pending. 
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4.6 Soft real-time and trade-offs  
Classical hard real-time techniques aim at guaranteeing that no timing requirement can be violated 
at any time, usually because these techniques are employed in safety-critical control systems, like 
in automotive or aerospace. However, this requires expensive techniques for determining worst-
case execution times and worst-case interference scenarios that may be very unlikely to happen. 
Yet, accounting for these worst-case conditions in the system analysis, design and run-time 
configuration, may lead to a significant amount of pessimism that may result into a relatively low 
saturation of the underlying physical resources, coupled with a relatively high energy 
consumption. 

Soft real-time techniques [25], on the other hand, deal with systems that can tolerate infrequent 
timing requirement violations, as the adopted computation and control logics are designed to 
compensate, for example, the occurrence of deadline misses. The typical example is the one of 
real-time multimedia, virtual and augmented reality and anytime computing, in which deadline 
misses can be compensated for example with frame skipping or lowering the quality of the 
computed outputs, or proper trade-offs can be sought between quality of the computed output vs 
resource requirements. This enables trading predictability for efficiency with the adoption of 
design and profiling techniques that aim at identifying resource requirements and interference 
scenarios that are likely to occur up to a sufficiently high probability, avoiding the expensive 
computation of precise worst-case bounds (i.e., focusing on experimental maximum computing 
times, or high percentiles of the expected computing times distributions, as opposed to computing 
WCET bounds), and employing at run-time adaptive techniques that allow for dealing with those 
infrequent times when timing requirements are violated. For example, with reservation-based 
scheduling, a number of techniques exist [26, 27] for on-line adaptation of the allocated reserved 
resources (e.g., feedback-based control of the reserved budget), leading to a controlled maximum 
percentage of deadline misses, beyond which the system may exhibit a too unstable behaviour. 

As high-performance computing platforms are more and more widespread in embedded real-time 
applications, it becomes increasingly important to support the coexistence on the same platform 
of hard real-time components, typically employing more easily analysable algorithms deployed in 
simpler software architectures, alongside with soft real-time components that may be 
characterized by more sophisticated computations using complex software stacks. Furthermore, 
the employment of soft real-time techniques allows for designing off-line analysis and on-line 
adaptive frameworks that enable trading timeliness of real-time applications for efficiency in 
resource usage and energy consumption within the platform. 

ID REQ-TIM-12 
Topic Timing and Schedulability Analysis 
Subtopic Soft Real-Time 
Name Coexistence of soft and hard real-time components 
Description The AMPERE eco-system must support the coexistence of hard and soft 

real-time components on the same platform, in a way that ensures the 
respect of the hard and soft timing requirements in place. 

Means for verification Test 
Type M 
Implementer(s) WP5 
Source Use cases, Platform 
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Thanks to the isolation guaranteed by REQ-TIM-12 just introduced, it will be possible to create 
spatial/temporal partitions of the system resources so that in AMPERE it will be possible to develop 
analysis techniques in WP3 that independently analyse the hard real-time and the soft real-time 
domains. Note that this requirement is related to REQ-TIM-05, but from the perspective of hard 
vs. soft real-time, and not application criticality. 

ID REQ-TIM-13 
Topic Timing and Schedulability Analysis 
Subtopic Soft Real-Time 
Name Probabilistic analysis of soft real-time applications 
Description The AMPERE eco-system should support probabilistic analysis of soft 

real-time applications, given a probabilistic characterization of the 
processing times and/or expectable interference terms. 

Means for verification Test 
Type S 
Implementer(s) WP3 
Source Use cases, Platform 

 

As mentioned, in soft real-time systems it may be important to support on-line refinement and 
adaptation of the system parameters, as sensed at run-time while applications are running, and 
employing a feedback-based control logic that reviews dynamically the system configuration as 
needed. This can include prediction and estimation logic that refines knowledge on the resource 
requirements of the actively running application components, as well as control logic specific to 
each soft real-time application component to drive its associated future resource allocation, as 
well as a control logic to drive and adapt the energy tunable in the system according to given 
system-level goals. Such an approach can be built by extending techniques like [28], among others. 

For this to be possible, the underlying platform needs to support proper sensors and actuation 
knobs (as noted in REQ-TIM-08). 

 

ID REQ-TIM-14 
Topic Timing and Schedulability Analysis 
Subtopic Soft Real-Time 
Name Per-entity resource consumption monitoring 
Description The AMPERE eco-system should support on-line monitoring of the 

resources consumption of individual real-time components 
Means for verification Test 
Type S 
Implementer(s) WP5 
Source Use cases, Platform 

 

For particularly dynamic workloads, the resource consumption levels for real-time application 
components in the future may non-necessarily reflect exactly what has been recently measured, 
or anyway it may be necessary to develop specific techniques to better foresee/predict the future 
evolution of the workload, i.e., considering linear regression or percentile estimation techniques 
or relatively simple techniques with sufficiently low associated overheads [26]. 
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ID REQ-TIM-15 
Topic Timing and Schedulability Analysis 
Subtopic Soft Real-Time 
Name Per-entity resource consumption estimation and prediction 
Description The AMPERE eco-system could support on-line estimation and 

prediction of the expected resources consumption of individual real-
time components in the future, exploiting information coming from the 
on-line monitoring of REQ-TIM-14. 

Means for verification Test 
Type C 
Implementer(s) WP5 
Source Use cases, Platform 

 

ID REQ-TIM-16 
Topic Timing and Schedulability Analysis 
Subtopic Soft Real-Time 
Name Adaptability in resource allocation 
Description The AMPERE eco-system should support the possibility to adapt 

dynamically the resources allocated to the soft real-time tasks 
Means for verification Test 
Type S 
Implementer(s) WP5 
Source Use cases, Platform 

 

ID REQ-TIM-17 
Topic Timing and Schedulability Analysis 
Subtopic Soft Real-Time 
Name Soft real-time controllers 
Description The AMPERE eco-system could include controllers employing logic to 

control dynamically the resource allocation depending on the 
monitored and/or foreseen resource consumption (REQ-TIM-14 and 
REQ-TIM-15), so to meet precise timeliness requirements for the 
application. 

Means for verification Test 
Type C 
Implementer(s) WP5 
Source Use cases, Platform 
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5  Software and Hardware Resilient Methods  
This section summarizes the requirements related to resilience and fault-tolerance, collected from 
the work in WP1 (Task T1.1 “System model requirement specification and use case definition” [2]) 
as well as from WP2 (Task 2.1 “Model transformation requirements specification” [3]), WP4 (Task 
4.1 “Run-time requirement specification” [4]) and the platforms from WP5 (Task 5.1 “Platform 
Selection” [5]).  

Fault-tolerance and resiliency are aspects of the dependability of systems targeted at software and 
at hardware level. Furthermore, the different components of the software stack (e.g., parallel 
programming model, runtime, operating system, etc.) can include techniques to enhance these 
aspects of the system.  

The remainder of the section introduces first the particularities of Cyber-Physical Systems (CPS) 
regarding resiliency; then, an overview of the most common hardware and software techniques 
towards fault tolerance is introduced; after that, fault tolerance at programming model level is 
shown for task-based models in general, and OpenMP in particular; finally, the approach for fault 
tolerance in AMPERE is explained, including particular requirements of the project and considered 
techniques.  

5.1 Resiliency in CPS 
CPSs in general, and the safety-critical components of CPSs in particular, need to keep delivering 
their functionality in the presence of run-time faults. The shrinking size of the components of the 
system coupled with the external noise and radiation (e.g., power supplies variations, lightning or 
alpha particles hitting the transistors of the processor) increases the vulnerability of the system to 
transient faults caused by a transistor’s state flipping. The system is also vulnerable to permanent 
faults (e.g., short circuit) and intermittent faults (e.g., loose electrical connection). 

AMPERE addresses two type of CPSs, as defined in the use cases targeted in the project: 
automotive and railway systems. In both scenarios, the heavy use of wireless communications 
opens the door to cyber-attacks, and thus jeopardizes the security of the system. As a 
consequence, the robustness and the recovery capabilities of the system are a paramount aspect 
of these systems.  

MDE is a common approach for the development of CPSs. This design flow may prevent several 
faults by allowing verification and validation processes at a model level. Additionally, MDE allows 
the use of code synthesis tools to generate the final code to be deployed on the target platform. 
Unfortunately, faults cannot be completely prevented, and particularly safety and reliability are 
identified as non-functional requirements difficult to fulfil even in MDE approaches [29]. 

Several works target the enhancement of the expressiveness of modelling languages regarding 
dependability, including fault tolerance concepts. Relevant examples are: the work extending 
Simulink in order to support the specification of common fault-tolerance design patters, like 
sparing, comparing and voting, so the extended models can tolerate hardware faults [30]; the work 
extending the Architecture Analysis and Design Language (AADL) to assist dependability analysis 
at the architecture level 11; and the work extending UML/Marte with a dependability profile 
covering fault tolerance concepts [31]. However, these proposals require considerable amounts of 
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manual effort to extend the mentioned models. Furthermore, they consider traditional DMSL 
defining concurrency, but not including parallel programming. 

5.2 Fault tolerance techniques: overview 
Fault tolerance is mostly achieved by introducing redundancy in software or hardware [32]. There 
are several forms of redundancy. This section introduces the most relevant ones for achieving fault 
tolerant systems, organized as hardware and software techniques. 

5.2.1 Hardware techniques 
Hardware fault tolerance techniques can be divided into three groups: 

• Fault-masking. This passive, or static, technique consists on hiding failures so the system 
can achieve fault tolerance without requiring any action. It is based on replicating resources 
and computation, and then using voting mechanisms to decide the correct result. 

• Reconfiguration. This active, or dynamic, technique consists of four steps: (1) detection, 
i.e., recognize a fault has occurred; (2) location, i.e., determine where a fault has occurred; 
(3) containment, i.e., isolate a fault and prevent te effects of that fault from propagating 
through the system; and (4) recovery, i.e., regain operational status via reconfiguration 
(modifying the use of components of the system). 

• Hybrid techniques. These techniques, combining static and dynamic approaches, entail a 
high cost, but also provide better evidence of fault-tolerance. An example is self-purging 
redundancy, where all units participate actively in the system and also have the capability 
to remove themselves from the system in the occurrence of faults. 

5.2.2 Software techniques 
The most common software techniques for fault-tolerant scheduling are the following: 

• Checkpointing. This is a backward error recovery technique that consists on periodically 
saving the state of the system in a checkpoint; then, when a fault occurs, the system state 
is replaced by the last checkpoint and the execution continues. 

• Replication consists on copying parts of an application; it can be active replication (a.k.a. 
spatial or structural replication), when multiple copies of the replicated part are executed 
in parallel, or passive replication (a.k.a. temporal replication), when a backup copy is run 
only if the original fails, so they never run in parallel. While spatial replication typically leads 
to increased makespan, i.e., the total length of the schedule, until the last processing unit 
has finished, temporal replication, on the other hand, adds overhead that might be 
unnecessary if no faults occur, as well as increase the energy consumption of the 
computation. 

5.3 Fault tolerance in AMPERE 
This section lists the requirements of the AMPERE project regarding fault tolerance, and describes 
the techniques envisioned in the project for addressing this non-functional requirement across the 
whole software ecosystem. 
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5.3.1 AMPERE requirements regarding fault tolerance 
The requirements introduced by WP3 regarding fault tolerance are summarized as follows. 

ID REQ-FAU-01 
Topic Fault tolerance 
Subtopic Support at HW level 
Name Access to hardware failures 
Description The AMPERE eco-system must include fault tolerant architectures. It 

must also support techniques for fault detection in all the hardware 
components. 

Means for verification Inspection 
Type M 
Implementer(s) WP3,WP5 
Source Platform 

 

ID REQ-FAU-02 
Topic Fault tolerance 
Subtopic Support at programming model level 
Name Static analysis based on the taskgraph 
Description The AMPERE eco-system must provide the static analysis techniques for 

analysing the parallel execution from a programming model 
perspective to decide the best places to automatically introduce fault 
tolerance techniques like task redundancy and checkpointing. 

Means for verification Test 
Type M 
Implementer(s) WP3, WP2 
Source Programming model 

 

ID REQ-FAU-03 
Topic Fault tolerance 
Subtopic Support at runtime level 
Name Dynamic reconfiguration 
Description The AMPERE runtime system, including the parallel runtime, the OS and 

the hypervisor, should include mechanisms for automatic 
reconfiguration in the occurrence of a failure in some hardware 
component. 

Means for verification Test 
Type M 
Implementer(s) WP3, WP4 
Source Runtime 

 

5.3.2 Fault tolerance in task-based parallel programming models 
The parallelism exposed in parallel applications can often be decomposed into a set of tasks with 
a series of input and output constraints. This structure can be modelled as a taskgraph, where 
nodes are tasks, and edges are dependencies (or ordering constraints) between tasks. 
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Replication can be naïvely performed on a taskgraph by duplicating all tasks in the graph [33]. 
Then, scheduling mechanisms can be applied to (1) ensure only one instance, the original or the 
duplicated, and (2) decide the better scheduling of the taskgraph with duplicated tasks in order to 
minimize idle resources, and to eliminate overhead in fault-free. The decision of duplicating all 
tasks may have however a severe impact in the energy consumption of the application, and again 
scheduling mechanisms are needed for frequency scaling [34]. 

Some features of the taskgraph, are however interesting when considering software techniques 
for fault tolerance. The most relevant are the following: 

• The depth of tasks, or task height. The height of a task is recursively computed as the 
maximum height of all its immediate successors +1. This information has been exploited to 
create partitions of the taskgraph (which, by definition, contains tasks independent among 
them) and schedule the tasks contained in each partition together with their duplicates in 
order to achieve fault tolerance in multiprocessor systems [35]. 

• The cost of task communications, or communication weight. This aspect describes the 
amount of data flowing through an edge of the graph, i.e., the amount of data produced 
by the predecessor task and consumed by the successor task. This information is further 
valuable for refining timing analysis and reducing the energy consumption [36]. 

• The cost of tasks, or task weight. The processing time of tasks on a processor may differ 
from those of the same tasks on another processor. The cost of tasks, together with the 
cost of the communications, has been previously used in proposed scheduling algorithms 
to prioritize tasks in fault-tolerant systems [37]. 

• The synchronization points. Synchronizations such as barriers and locks pose two important 
issues when considering fault-tolerant system: causality related dependencies and 
resource contention. Previous works analyse these issues in order to allow checkpointing 
tasks at any time, even when holding or waiting for locks and barriers [38]. 

OpenMP [39] is the parallel programming model considered in the AMPERE project for exploiting 
performance in parallel architecture by virtue of its many benefits: productivity, portability and 
heterogeneous support, among others. OpenMP allows describing the behaviour of a program as 
a taskgraph by means of the tasking model. In OpenMP, this representation is called task 
dependency graph (TDG). Figure 12 shows a snippet (left) of an OpenMP application, adapted from 
the DAPHNE benchmark suite [40] to use OpenMP tasks instead of OpenMP worksharings (e.g., 
for loops), and the corresponding TDG (right). 
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Although OpenMP focuses on exploiting performance on HPC systems, there are several aspects 
of the specification and some proposed runtime extensions that provide OpenMP frameworks 
with capabilities for fulfilling non-functional requirements such as fault tolerance: 

• Features towards fault tolerance in the OpenMP specification. 

OpenMP provides cancellation constructs as a step for addressing fault tolerance. These 
are the cancel construct, that activates the cancellation of the innermost enclosing 
region, considering parallel and taskgroup regions, among others; and the 
cancellation point construct, that introduces a user-defined point at which the cancellation 
of the innermost enclosing region can be checked. 

Cancellations are however insufficient for providing a fault-tolerant system in the presence 
of critical tasks. There is already an extensive proposal towards fault tolerance based on 
user-defined error handling, i.e., mechanisms offer at a user-level for specifying a particular 
action when a failure occurs during the execution of a given computational unit [41]. The 
error model proposed for OpenMP includes three different features: (1) constructs, like the 
already supported cancel construct, to stop a given region; (2) return codes, suitable for 
exception-unaware languages; and (3) callbacks, suitable for exception-aware languages. 

Another interesting mechanism to support fault tolerance is based on the concept of 
alternative task [42]. This is a form of spatial replication that uses different 
implementations for replicating a task. OpenMP defines the metadirective and the 
declare variant directives. The former is a directive that can specify multiple directive 
variants that can be conditionally selected. The latter declares a specialized variant of a 

… extractEuclideanClusters(…) 
  #pragma omp parallel taskloop 
  for (int i = 0; i < cloud_size; ++i) 
  { … } 
  #pragma omp parallel taskloop 
  for (int i = 0; i < cloud_size; ++i) 
  { … } 
  omp_target_alloc(…); 
  omp_target_memcpy(…); 
  for (int i = 0; i < cloud_size; ++i) { 
    #pragma omp target map(to: …) map(from: …) 
    { 
      #pragma omp teams distribute parallel for 
      for (int i = 0; i < cloud_size; ++i) { 
      { … } 
    } 
  } 
  omp_target_free(…); 
} 

 
#pragma omp task 
… sort () 
{…} 
 
#pragma omp task 
… color() 
{…} 

Figure 12. OpenMP Euclidean Cluster benchmark from the DAPHNE suite: code snippet (left) and TDG (right). 
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function and specifies the context in which it is used. OmpSs has a feature similar to the 
declare variant directive, the implements clause that, attached to the target 
construct can be used to specify that the annotated task is an implementation of another 
task [43]. 

• Fault tolerant OpenMP runtime frameworks 

Application-Level Checkpointing (ALC) is a mechanism based on saving the application-level 
state (i.e., heap, global and local variables, and call stack). It is an alternative to the 
commonly used System-Level Checkpointing (SLC), based essentially in core-dump-style 
snapshots of the computational state of the machine, which is very machine and OS-
dependant. There is a proposal based on ALC that aims at providing self-checkpointing. It 
requires user intervention to decide the suitable places for checkpointing [44]. This 
proposal has been further enhanced with compiler analysis and optimizations to reduce 
the amount of data checkpointed [45, 46]. 

With the objective of reducing the overheads introduced by checkpointing techniques, and 
so increase the scalability of the system, redundant threads for parallel regions have been 
proposed [47]. This work uses spatial redundancy; more specifically it creates three replicas 
of each fault tolerant section, and run them in three different threads. Then, a comparison 
and vote step decides the final result. The redundancy is applied to all parallel regions of 
the OpenMP program, so the structure of the taskgraph is not exploited. 

Finally, there are also proposals for task level redundancy [48,49]. These works are based 
on the concept of reliable task, which defines a unit of computation that has the ability of 
detecting and recovering from a fault. For each reliable task in the system, three redundant 
tasks are created. At the end of their execution, a compare and vote step synchronizes the 
results providing the correct one. This method however does not ensure correctness if all 
replicated tasks mismatch their outputs. Results show a 95% success ratio and a maximum 
performance degradation of 1,8x. 

In the AMPERE ecosystem, the domain-specific modelling language, the synthesis tools and 
compilers, and the multi-criteria optimization tools will communicate by means of meta models 
mainly representing a TDG. For this reason, the fault tolerance techniques that the AMPERE project 
will consider are based on the information that can be represented in the TDG, as well as on how 
this information can be exploited at a parallel programming model level, and respected across the 
whole runtime system. Overall, the research lines include: 

• Use the structure of the TDG to determine the best places to apply fault tolerant 
mechanisms. As endorsed by previous research at a dynamic level, these points are: 

o Barriers and other synchronization constructs (e.g., taskwaits, taskgroups, etc.) are 
suitable points to perform automatic checkpointing because the amount of on-the-
fly data can be negligible compared to those parts of the TDG exposing more 
parallelism. 

o The cost of tasks is also an important aspect to consider in an automatic task 
replication mechanism. In this regard, tasks with higher costs can be spatially 
replicated or provide alternatives, while tasks with lower costs can be temporally 
replicated. 

o The cost of communications is an important aspect to take into account for the 
scheduling of replicated tasks. For example, in the occurrence of a transient fault, a 
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replicated task could be scheduled in the same processor it failed in order to avoid 
the cost of moving huge amounts of data. 

• Mix user-defined exception handling and alternative task techniques [50]. The proposal to 
extend OpenMP with callbacks can be combined with alternative implementations of a 
task, via the declare variant directive, in order to specify a workflow to be launched 
to deal with a failure in a specific task. This workflow can include CPU, GPU and FPGA 
versions of the same task. 

 

 

 

 

  

 

 

  



         

31 

 

D3.1 Multi-criteria optimization requirements 
Version  1.1 

6  Conclusion  
This document presented the requirements related to the multi-criteria optimization associated 
to the non-functional constraints considered in AMPERE (energy-efficiency, time-criticality and 
fault tolerance), consolidated from the analysis of the project use cases. The description of the 
requirements includes the concrete criteria and metrics, as well as the means of verification, for 
the evaluation of the project results. 

The document also identifies the initial techniques that will be considered in the scope of the 
development of the project, related to the considered energy models, the timing and 
schedulability analyses and the software and hardware resilient methods. These techniques will 
provide the required guarantees to the non-functional requirements of the targeted systems, 
whilst targeting high-performance parallel execution.  
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Acronyms and Abbreviations 
 

- ALU – Arithmetic Logic Unit 
- CPS – Cyber-Physical Systems  
- CPU – Central Processing Unit 
- DVFS – Dynamic Voltage and Frequency Scaling 
- FPGA – Field Programmable Gate Array 
- GPU – Graphics Processing Unit 
- KPI – Key Performance Indicator 
- MDE – Model Driven Engineering 
- MS – Milestones 
- PE – Processing Element 
- PMU - Performance Monitoring Unit 
- RISC-V - open instruction set architecture based on Reduced Instruction Set Computer (RISC) 
- SIMD – Single Instruction Multiple Data 
- WCET – Worst-Case Execution Time 
- WP – Work Package 
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