

D3.1 Multi-criteria optimization requirements
Version 1.1

Documentation Information

Contract Number 871669

Project Website www.ampere-euproject.eu

Contractual Deadline 30.06.2020 (delivery on 30.09.2020 due to COVID-19 situation)

Dissemination Level PU

Nature R

Author Luis Miguel Pinho (ISEP), Björn Forsberg (ETHZ), Alessandro Biondi (SSSA),
Tommaso Cucinotta (SSSA), Sara Royuela (BSC)

Contributors Luis Nogueira (ISEP), Thomas Benz (ETHZ)

Reviewer THALIT

Keywords Non-functional requirements, multi-criteria optimization, energy models,
timing and schedulability analysis, resilience methods

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 871669.

Ref. Ares(2020)5109309 - 29/09/2020

http://www.ampere-euproject.eu/

1

D3.1 Multi-criteria optimization requirements
Version 1.1

Change Log

Version Description Change

V0.1 First draft

V0.5 Inputs from ISEP, SSSA, ETHZ

V0.6 Consolidation of inputs from ISEP, SSSA, ETHZ

V0.7 Review of THALIT

V0.8 Revised version and inputs from BSC

V1.0 First complete release

V1.1 Final revision

2

D3.1 Multi-criteria optimization requirements
Version 1.1

Table of Contents

1 Executive Summary ... 3

2 Introduction .. 4

2.1 Document structure ... 5

3 Energy Models .. 6

3.1 Model Rationale ... 7

3.2 On the importance of representative counters ... 9

3.3 Impact to Offline Optimization Stage .. 12

4 Timing and Schedulability Analysis ... 15

4.1 Time-criticality requirements... 15

4.2 Models of computation ... 15

4.3 Runtime impact .. 16

4.4 Execution time ... 17

4.5 Analysis of HW acceleration .. 18

4.6 Soft real-time and trade-offs ... 21

5 Software and Hardware Resilient Methods .. 24

5.1 Resiliency in CPS ... 24

5.2 Fault tolerance techniques: overview .. 25

5.2.1 Hardware techniques ... 25

5.2.2 Software techniques .. 25

5.3 Fault tolerance in AMPERE .. 25

5.3.1 AMPERE requirements regarding fault tolerance .. 26

5.3.2 Fault tolerance in task-based parallel programming models .. 26

6 Conclusion ... 31

Acronyms and Abbreviations .. 32

References .. 33

3

D3.1 Multi-criteria optimization requirements
Version 1.1

1 Executive Summary
This deliverable covers the work done during the first phase of the project within WP3. The
deliverable spans 9 months’ work (including 3 extra months with respect of the Grant Agreement
[1] due to the COVID19 situation), and provides results of the work done in Task 3.1 “Multi-criteria
optimisation requirements specification” for milestone 1 (MS1).

The document provides the analyses and consolidation of the requirements related to the multi-
criteria optimization associated to the non-functional constraints considered in AMPERE (i.e.,
energy-efficiency, time-criticality and fault tolerance), and describes the initial techniques that will
be considered in the scope of the development of the work package for later milestones and tasks
(i.e., energy models, timing and schedulability analysis and software and hardware resilient
methods) and that better fit parallel execution.

The target at MS1 is the evaluation of energy models, time and schedulability and resilient
techniques that better fit parallel execution. The first milestone of Task 3.1 has been carried out
successfully, and all objectives of MS1 have been reached and documented in this deliverable.

4

D3.1 Multi-criteria optimization requirements
Version 1.1

2 Introduction
AMPERE addresses the challenge of fully exploiting the benefits of performance demanding
emerging applications (such as artificial intelligence or big data analytics), which can only be met
on parallel platforms composed of different heterogeneous computing resources, whilst
guaranteeing the energy efficiency, real-time response and resiliency non-functional
requirements, required by cyber-physical applications.

The goal of WP3 is thus to investigate and provide a set of analyses, which are able to perform a
multi-criteria optimization at development phase, guiding the model-driven to programming
model transformation and ensuring that non-functional constraints are fulfilled, and devise
execution models and methods to guarantee their fulfilment at run-time, considering the
underlying runtimes and platforms.

In particular, and in what respects to energy-efficiency, WP3 will (i) investigate the energy
consumption components present in the selected parallel platform(s) and how are impacted by
the different power management knobs and run-time decisions; (ii) devise methods to extract
information on (1) workload specification, (2) non-functional constraints included in the parallel
programming model and (3) hardware platform characteristics impacting on energy; and (iii)
develop energy-aware execution models based on previous information that push the selected
parallel platform(s) introspection capabilities beyond what is currently feasible.

With respect to time predictability, WP3 will (i)investigate and develop predictable execution
models of the selected parallel platforms to simplify timing and schedulability analysis, including
optimizations in the placement of functionality into cores, offloading operations, DPR operations
and computation on accelerators; and (ii) develop timing and schedulability analyses for the
proposed scheduling algorithms and heterogeneous execution models developed in WP4.

With respect to fault tolerance, WP3 will improve the system’s fault tolerance, considering
reliability and availability aspects resulting in improved system’s dependability.

This document provides the initial baseline for the work of WP3, in particular the requirements
related to the multi-criteria optimization associated to the non-functional constraints considered
in AMPERE (i.e., energy-efficiency, time-criticality and fault tolerance). Requirements are listed
one-by-one together with the following attributes:

• ID: the requirement identifier.
• Topic: the main system the requirement is applied to. Requirements have been analysed

and consolidated in the following topics: Timing, Energy, Communication, Security
• Subtopic: the category of the requirement.
• Name: the friendly name of the requirement
• Description: the body of the requirement, with the associated metrics.
• Means for verification: the way this requirement will be evaluated within the project.
• Type: the type of requirement defined according to the MoSCoW Model:

o MUST HAVE (M): Defines a requirement that has to be satisfied for final solution to
be acceptable. It is mandatory.

o SHOULD HAVE (S): This is a high-priority requirement that should be included if
possible.

5

D3.1 Multi-criteria optimization requirements
Version 1.1

o COULD HAVE (C): This is a desirable or nice-to-have requirement, but the solution
will still be accepted if the functionality is not included.

o WOULD LIKE (W): This represents a requirement that stakeholders would like to
have but have agreed will not be implemented within the scope of this project

• Implementer: the WP responsible of the requirement capture within the project
• Source: Indicates where this requirement comes from.

The document also puts together the initial techniques that will be considered in the scope of the
development of the work package for later milestones and tasks (i.e., energy models, timing and
schedulability analysis and software and hardware resilient methods). These models will consider
predictable high performance as the main goal, and will be based on techniques that better fit
parallel execution, addressing the baseline requirements.

The relation of this deliverable with other WP is shown in the next Table 1, considering deliverables
and tasks that are involved with the studies performed for completing this deliverable.

Table 1. Relationship between D3.1 and other deliverables.

Deliverable Leader Task Description

D1.1 THALIT T1.1 System models requirements specification and use case selection

D2.1 BSC T2.1 Model transformations requirements

D4.1 SSSA T4.1 Run-time requirement specification

D5.1 SYSGO T5.1 Reference parallel heterogeneous hardware selection

2.1 Document structure
This document is organized in 7 sections:

- Section 1 provides an Executive Summary of the document.
- Section 2 introduces briefly the context and gives a main view of the structure of the

document.
- Section 3 gives a general overview of the constraints related to energy-efficiency, and the

initial energy models and optimization strategies to be considered within AMPERE.
- Section 4 gives a general overview of the constraints related to time-criticality, and the

initial timing and scheduling analysis to be considered within AMPERE.
- Section 5 gives a general overview of the constraints related to fault-tolerance, and the

initial hardware and software resilient methods to be considered within AMPERE.
- Section 7 provides a summary and conclusion of the document.

6

D3.1 Multi-criteria optimization requirements
Version 1.1

3 Energy Models
This section summarizes the requirements related to energy-efficency, collected from the work in
WP1 (Task T1.1 “System model requirement specification and use case definition” [2]) as well as
from WP2 (Task 2.1 “Model transformation requirements specification” [3]), WP4 (Task 4.1 “Run-
time requirement specification” [4]) and the platforms from WP5 (Task 5.1 “Platform Selection”
[5]).

To design an energy-efficient AMPERE eco-system, we need to track energy usage during the
execution of an AMPERE system, and the data gathered about energy consumption is analysed
during the offline optimization stage.

The energy consumption of software components running on complex modern CPUs that are in
the focus of the AMPERE high-performance embedded application use-cases, cannot simply be
modelled using simplistic approaches relying solely on knowledge of the configuration of the DVFS
tunables of the platform (frequency of the CPU cores), accompanied by the workload/idle ratio
over each CPU core. Indeed, during the execution of a workload that at a high-level is keeping a
CPU core continuously busy processing, the energy consumption may vary in non-negligible ways
depending on what parts of the CPU pipeline are actively engaged vs stay idle, due to the
instructions actually in execution, and how long the cores stall waiting for data from the main
memory due to cache misses, for example. This can be highlighted with a simple experiment, as
reported in the figure below.

Figure 1. Execution of benchmarks in the LITTLE and big cores of ARM big.LITTLE ODROID-XU3 board.

We have run a number of common CPU-intensive application benchmarks on one of the LITTLE
and big cores of an ARM big.LITTLE ODROID-XU3 board. Albeit not being the UltraScale+ board
selected for the project, this board possesses interesting non-SMP features in its architecture,
constituting an excellent challenge for investigating soft real-time guarantees vs energy efficiency
trade-offs. On the left and right subplots, we can see what power consumption (on the Y axis)
corresponds to each of the possible OPPs/frequencies (on the X axis) configurable for the LITTLE
and big island, respectively. As evident, the curves corresponding to various application workloads
(continuous lines), as well to synthetic data-intensive computational hogs imposing approximate
percentages of cache misses (dashed lines), obtain different power consumptions at equal OPP
configurations. This underlines the importance of tracking, modelling and estimating the energy

7

D3.1 Multi-criteria optimization requirements
Version 1.1

consumption of applications. Clearly, a real application may dynamically switch among different
types of computations, making the power consumption estimation task even more challenging,
and calling for on-line solutions that can adaptively refine initially rough estimations monitoring
the applications at run-time.

At run-time, the energy usage of the system may be tracked by estimating the energy usage with
a linear model, which is trained during the offline stage. The overall picture is presented in Figure
2. The platform specific countable hardware and software events (A) and the state of the software-
tunable energy-relevant parameters, such as DVFS configuration (B) are used as input for the
offline-trained model (C), which delivers an energy prediction (D) – i.e., an estimation of the
current usage – which is used at runtime to impact the software-tunable parameters (B).

Figure 2. A schematic overview of the interaction of the energy consumption model.

3.1 Model Rationale
The energy usage of the system is given by the power usage and the time it is spent.
Fundamentally, the power used by the system consists of a static (leakage) component, and a
dynamic component. The dynamic component depends on the activity in the hardware, e.g., as
highlighted with alphas in Figure 3. Taking these two components into account, the power usage
of the system can be estimated as shown below. Each signal alpha is assigned a weight w that
represents its contribution to the system power use, which are summed up with the static power
for each signal.

Figure 3. Signaling activity represented by different alphas in a mockup-system.

SoC Data
• Frequency
• Vcore B

Counters
Core 0Counters

Core 0Counters
Core 0

A

Model
C

External
V-A-Meter

E

Prediction
D

F

α1

α2

α3

α4

α5

α6 α7

α8

8

D3.1 Multi-criteria optimization requirements
Version 1.1

 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 = ∑𝛼𝛼𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖 + 𝑃𝑃𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸 (1)

However, it is unfeasible to analyse the system at this granularity. First, because this low-level
information is typically not available for the commercial platforms used in the system, and
secondly that the time to estimate would make the multi-criteria optimization pass of the AMPERE
framework unbearably slow. These two aspects mainly affect the offline phase of the energy-
efficiency optimization. Furthermore, it is not possible to track the system at this granularity at
runtime, making the monitoring of individual components during execution impossible.

For this reason, as is commonly done, the system is abstracted from individual signals into larger
functional units. At this point, the power estimation can still be done in a similar way, using the
below equation. In this case, a new weight w is assigned to each functional unit alpha (as opposed
to the previous signals), depending on its contribution to the system power usage. Importantly,
while the equations look similar, the abstraction into functional units alpha vastly reduces the
number of terms in the summation, making it feasible to fit a linear model to obtain the weights
(offline), and run inference on the model at runtime. In particular the latter becomes feasible in
terms of the low overhead runtime-monitoring (KPI3.2) only at this level. For the offline training
(fitting) of the model, abstracting the system into larger functional units has one additional
advantage. While information about individual signals in commercial platforms are not available,
information about functional units, e.g., ALU, SIMD engine, etc., are readily available.

 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 = ∑𝛼𝛼𝑖𝑖 ∗ 𝑤𝑤�𝑖𝑖 + 𝑃𝑃𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸 (2)

The final form of the model is given by the below equation. It assumes that power is linear in
functional units, as well as that all relevant functional units can be tracked.

𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ �𝑠𝑠𝑖𝑖 ∗ �𝑃𝑃𝑔𝑔𝑠𝑠𝐸𝐸𝑔𝑔𝑔𝑔 − 𝑃𝑃𝑙𝑙𝑔𝑔𝑠𝑠𝑙𝑙𝑠𝑠𝑔𝑔𝑔𝑔�+ 𝑃𝑃𝑙𝑙𝑔𝑔𝑠𝑠𝑙𝑙𝑠𝑠𝑔𝑔𝑔𝑔 + ∑ (1 − 𝑠𝑠𝑖𝑖) ∗ 𝛼𝛼𝑗𝑗 ∗ 𝑣𝑣2 ∗ 𝑓𝑓 ∗ 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝑔𝑔𝑁𝑁𝐸𝐸
𝑗𝑗=0 �𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑔𝑔𝐸𝐸

𝑖𝑖=0 (3)

Based on this information, the functional units of the selected platforms, the Xilinx UltraScale+ and
the NVIDIA Xavier (see D5.1) are identified. Both commercial platforms used within the project
feature a multi-core ARMv8 CPU as host processor. These processors can be abstracted into
multiple functional units, e.g., ALU, SIMD engine, etc. To track the activity within each functional
unit, the performance counters can be used [6]. The activity in the ARM cores can be tracked by
using the ARM Performance Monitoring Unit Version 3 (PMUv3). The PMUv3 provides the
infrastructure to count a number (3 on Xavier, 6 on US+) of hardware events (e.g., bus access,
completed cycles, etc.). These events are primarily intended for performance monitoring
purposes, but provide access to information about the functional units of the processor necessary
for energy/power estimation.

ID REQ-ENE-01
Topic Energy Efficiency
Subtopic Energy Modeling
Name Access to Hardware Events for Energy Modeling
Description The AMPERE eco-system must support the tracking of hardware event

counters, and ensure that counter access does not conflict between
different parts of the AMPERE runtime.

Means for verification Demonstrators
Type M
Implementer(s) WP3
Source Platform

9

D3.1 Multi-criteria optimization requirements
Version 1.1

If there is competition for different parts of the runtime to use the performance monitoring unit,
it may be worth exploring if, during the offline optimization phase, changes in the program
execution pattern (e.g., memory vs compute bound segments) can be identified, and hooks to the
energy optimization runtime can be injected into the code. Performing such on-demand
adjustments to the software-controlled mechanisms for energy management may also serve to
reduce the runtime overhead.

3.2 On the importance of representative counters
The first step is to identify which counters that correlate well with the energy usage of the system.
By tracking these counters, the behaviour of the most relevant functional units are implicitly
identified. For this purpose we use a technique similar to [7]

. An example for two benchmarks and a set of counters is shown in Figure 4.

Figure 4. Correlation of hardware events (from performance counters) to energy usage of the NVIDIA Xavier.

Figure 4 shows one row for each out of the eight cores, for two benchmarks. Each column
represents a counter. Counters with a high positive correlation to power usage are highlighted in
green, counters with a high negative correlation are highlighted in red, and all other counters with
low correlation are highlighted in bright yellow. As can be seen in the figure, there are a number
of counters with high correlation to energy, which we include in the model. In particular, this
includes the L1 data cache refill event, the number of memory accesses, the completed cycles, and
the unnamed counter 0x27, which is triggered with SIMD-heavy computation is executed on the
Xavier.

How important the selection of relevant counters is can be seen in the following two traces, shown
in Figure 5 and Figure 6. The figure shows in orange the externally measured power usage of the
system, while the blue line shows the estimated power based on the model. The trace shows the
execution of several Rodinia benchmarks [8]. In Figure 5, the model does not include the SIMD
event counter, and as can be seen, especially between the 5000 and 6000 ms marks, the estimated
power does not follow the actual power usage very well. If instead the model is retrained with the

10

D3.1 Multi-criteria optimization requirements
Version 1.1

SIMD event counter included, as shown in Figure 6, the estimated power follows the true value
more closely.

Figure 5. The estimated energy use (blue) and the ground truth (orange line, yellow measurement error) without

including the SIMD unit.

Figure 6. The estimated energy use (blue) and the ground truth (Orange line, yellow measurement error), including

the SIMD unit.

At this point, it is tempting to imagine that the system can be well-modelled by devising synthetic
workloads that stress each individual functional unit independently. For this purpose, we devise
synthetic workloads ALU, FLOAT, MEM, BRANCH, in single- and multi-threaded configurations,
which we use to train the model. However, as can be seen in Figure 7, under these circumstances
the estimated power deviates significantly from the actual power. This behaviour is specific to the
more complex processors in the commercial platforms, but works well for simpler processing units,
as the RISC-V-based processing elements (PE) in HERO1, using only synthetic workloads. This
indicates that a combination of these approaches can potentially be used to cover all units of all
platforms within the project.

1 HERO, the Heterogeneous Research Platform, is a programmable many-core accelerator system developed at ETHZ.
It consists of a 64-bit RISC-V host processor and one or more clusters of simple RISC-V cores (processing elements, PE)
for parallel processing. This system can be used, as per the WP5 description, as a research platform within the project
to explore solutions in hardware that are not available in the commercial platforms. For more information, please see
https://arxiv.org/pdf/1712.06497.pdf

11

D3.1 Multi-criteria optimization requirements
Version 1.1

Figure 7. The bad energy estimation (blue) compared to the ground truth (Orange) when training the model with

synthetic benchmarks.

An issue that was up until now not discussed, but that is also relevant to achieve the good
estimates previously presented is the power gating of the processor.

When the processor is power gated, it ideally uses no dynamic or leakage power, and therefore
greatly impacts the overall energy usage of the system. Unfortunately, in the case of the Xavier
processors, gating cannot be controlled by software, and as such must be included in the model to
achieve a good estimate.

Thankfully, this information can be derived from the cycle counter of the PMU. In Figure 8, the
cycle counter for a benchmark execution is shown on the Y axis, as measured at each point in time
(X axis). During this execution, the operating point has been fixed, i.e., the frequency remains
constant, yet, as shown in the Figure, there is large variance in the number of recorded active
cycles. At the points in time where few cycles are recorded, the processor has been power gated.
In the shown example, this happens automatically and corresponds to the phases of the executing
program when a significant portion of time is spent waiting on data from memory. Thus, even if
the system is configured for a fixed operating point, low-level hardware features within the
platform is constantly optimizing the energy usage, turning of unused components in real-time
and without explicit management from software.

ID REQ-ENE-02
Topic Energy Efficiency
Subtopic Energy Modeling
Name Access to Active Cycle Counter
Description The AMPERE eco-system must support the tracking of the Active Cycle

Counter, to ensure software-awareness of hardware controlled events,
such as power gating.

Means for verification Demonstrators
Type M
Implementer(s) WP3
Source Platform

12

D3.1 Multi-criteria optimization requirements
Version 1.1

Figure 8 The cycle counter for a sequence of Rodinia benchmarks, while keeping the processor executing at a fixed

frequency.

By correctly tracking the effects of power gating in the energy estimates using the active cycles
counter from the PMU, the energy usage of the system can be well estimated, as shown in Figure
9. The figure shows the data from the board’s current/voltage monitor as an orange line, the
quantization error associated with it as a yellow band, and the estimation shown as a blue line. On
average, the estimated energy usage (blue) gives the same result as the current/voltage monitor,
while at each individual point in time the average deviation is within +/-15%.

Figure 9. Well-estimated energy usage (blue) compared to ground truth (Orange, yellow measurement error), when

Accounting for clock gating through monitoring the active cycle counter.

3.3 Impact to Offline Optimization Stage
The training of the runtime model requires representative training data. Our goal is to provide a
pre-trained model that does not require re-training of this model when adopting the system,
however, the ability to do that should be present in the AMPERE eco-system. This is in line with
the envisioned profiling and adaptation “backloops” in the AMPERE multi-criteria optimization
design flow, as shown in Figure 10.

13

D3.1 Multi-criteria optimization requirements
Version 1.1

Figure 10. The envisioned flow for the multi-critiera optimization phase.

ID REQ-ENE-03
Topic Energy Efficiency
Subtopic Multi-criteria Optimization Pipeline
Name Profiling and Adaptation Mechanisms for Multi-Criteria Optimization
Description The AMPERE multi-criteria optimization pipeline must establish means

for profiling and subsequent adaptations during the optimization
phase.

Means for verification Test
Type M
Implementer(s) WP3
Source Programming Model, Platform

To perform initial energy-efficiency optimization, there must be an offline model for the initial
energy estimation. While the presented model is able to provide very accurate estimations of the
energy use, it currently relies on information that is only available online, i.e., the impact of
hardware-controlled clock gating, as well as the activity in different hardware units. As part of the
offline optimization stage, an important aspect is to determine how the heterogeneity of the
system can be best used, and as such, it must be possible to understand what the energy
requirements are for different workloads on the different processing devices (e.g., CPU, GPU, …)
within the system. For this purpose, a simplified model can be used that assumes the worst-case
clock-gating behaviour (always on), or a heuristic model that encompasses information about
computational patterns that trigger gating behaviour, e.g., memory intensive code regions. This
simplifies the input data to the model, but requires more details of the energy impact of different
code constructs and instructions to be included in the platform model. As a starting point, a model
such as [9] can be used. By including separate energy-performance pairs for each DVFS operating
point in the platform model, a safe minimum frequency, i.e., minimum energy-level, can be
assigned during the offline optimization stage. By including this information for all processing
devices, heterogeneity of the system can be explored from an energy-efficiency perspective in the
offline optimization phase.

14

D3.1 Multi-criteria optimization requirements
Version 1.1

ID REQ-ENE-04
Topic Energy Efficiency
Subtopic Platform Model
Name Specification of Hardware Energy Characteristics in Platform Model
Description The AMPERE platform models used for the optimization pipeline must

include energy-characteristics for the supported platforms, to allow
offline estimation of energy requirements for different code constructs.
This ensures the possibility for energy analysis without having to resort
to profiling.

Means for verification Inspection
Type M
Implementer(s) WP3
Source Platform, Programming Model

It should therefore be the goal of the offline optimization stage to provide safe upper bounds for
the energy-usage of the system, which can be improved with runtime information. As part of the
work in Task 4.2, ETHZ will explore techniques that allow tighter bounds to be generated from
offline information (system model + code) with respect to online data (hardware events counted).
This allows the employment of techniques such as (energy) slack reclamation and borrowing
mechanisms [10, 11, 12] to be used to further improve the energy efficiency at runtime, based on
the online optimization. During the offline stage, we envision energy budget information to be
encoded for each task, such that the AMPERE runtime can further optimize during execution.

ID REQ-ENE-05
Topic Energy Efficiency
Subtopic Modelling Framework
Name Encoding of Non-Functional Energy Requirements in Application Models
Description Executable runnables and generated code must, where applicable,

have an energy budget per activation assigned to them. This ensures
that a) analysis can verify that non-functional requirements are upheld,
and b) enable further optimization at runtime by reclaiming unused
energy budgets.

Means for verification Demonstrators
Type M
Implementer(s) WP3
Source Platform

15

D3.1 Multi-criteria optimization requirements
Version 1.1

4 Timing and Schedulability Analysis
This section summarizes the requirements related to timing and schedulability analysis, collected
from the work in WP1 (Task T1.1 “System model requirement specification and use case definition”
[2]) as well as from WP2 (Task 2.1 “Model transformation requirements specification” [3]), WP4
(Task 4.1 “Run-time requirement specification” [4]) and the platforms from WP5 (Task 5.1
“Platform Selection” [5]).

4.1 Time-criticality requirements
The use cases considered by AMPERE (railway obstacle detection and avoidance system and
automotive intelligent predictive cruise control), are representative of cyber-physical systems,
where the interactions between the computing systems and the environment are made through
control loops, which have clear semantics of a sense-compute-actuate chain. Due to the critical
nature of some of these control loops, the AMPERE eco-system must guarantee that the response
time of the critical chains is within specified bounds, imposed by the requirements of the external
controlled physical system.

ID REQ-TIM-01
Topic Timing and Schedulability Analysis
Subtopic Control loops
Name Types of control loops
Description The AMPERE eco-system must support control loops which consist of

event-chains and/or computation graphs, with end-to-end response
time requirements.

Means for verification Use case demonstrators
Type M
Implementer(s) WP2,WP3,WP4
Source Use cases, programming models

ID REQ-TIM-02
Topic Timing and Schedulability Analysis
Subtopic Control loops
Name Real-time requirements
Description The AMPERE eco-system must support applications with hard real-time

requirements.
Means for verification Use case demonstrators
Type M
Implementer(s) WP2, WP3, WP4
Source Use cases

4.2 Models of computation
At the same time, AMPERE considers a Model Driven Engineering (MDE) approach, where the non-
functional requirements are mapped in higher-level modelling frameworks (AMPERE considers
AMALTHEA and CAPELLA) and transformed into the underlying parallel programming model

16

D3.1 Multi-criteria optimization requirements
Version 1.1

(OpenMP in AMPERE). This transformation needs to take into consideration the timing properties
of applications, and guarantee the fulfilment of the related requirements, under different models
of computation [13, 14, 15, 16], approaches which are going to be developed in task 4.3.

ID REQ-TIM-03
Topic Timing and Schedulability Analysis
Subtopic Schedulability Analysis
Name Graph Analysis
Description The AMPERE eco-system must support schedulability analysis of

application graphs/chains.
Means for verification Use case demonstrators
Type M
Implementer(s) WP3
Source Use cases, Programming model

ID REQ-TIM-04
Topic Timing and Schedulability Analysis
Subtopic Schedulability Analysis
Name Publish-subscribe Analysis
Description The AMPERE eco-system must support schedulability analysis of

application components interacting using communication and
synchronization primitives with publish-subscribe semantics.

Means for verification Use case demonstrators
Type M
Implementer(s) WP3
Source Use cases, Programming model

4.3 Runtime impact
From the runtime perspective, AMPERE considers a hierarchical approach [17], where the
computing platform can be abstracted to applications and operating systems, through a
hypervisor, providing isolation between different applications executing in the same computing
node. Therefore, analysis tools need to include the concept of multiple levels of mapping and
scheduling, which need to be also considered in the run-time mechanisms.

ID REQ-TIM-05
Topic Timing and Schedulability Analysis
Subtopic Schedulability Analysis
Name Mixed-criticality scheduling
Description The AMPERE eco-system should support multi-core schedulability

analysis of hierarchical schedulers, with mixed-criticality constraints.
Means for verification Use case demonstrators
Type M
Implementer(s) WP3
Source Use cases

17

D3.1 Multi-criteria optimization requirements
Version 1.1

Moreover, in order to guarantee that there is enough computational capacity available for critical
tasks, the AMPERE eco-system needs to support reservation-based approaches [18] and runtime
regulation mechanisms (e.g. MemGuard [19]).

ID REQ-TIM-06
Topic Timing and Schedulability Analysis
Subtopic Schedulability Analysis
Name Analysis of reservation/regulation schedulers
Description The AMPERE eco-system must support schedulability analysis of

reservation-based schedulers and SW-based regulation.
Means for verification Use case demonstrators
Type M
Implementer(s) WP3
Source Use cases, Runtime

4.4 Execution time
Real-time schedulability tests for multi-core systems assume that the worst-case execution time
(WCET) for the computation (code fragments) is given [20]. Therefore, in order to be able to derive
the schedulability analysis of the applications, and provide the required guarantees, AMPERE must
provide the appropriate mechanisms and analysis for determining execution time.

ID REQ-TIM-07
Topic Timing and Schedulability Analysis
Subtopic Worst-case execution time
Name Worst-case execution time analysis
Description The AMPERE eco-system should support worst-case execution time

(WCET) analysis.
Means for verification Inspection
Type S
Implementer(s) WP3
Source Use cases

Most timing analysis methodologies focus on determining the worst-case execution time (WCET)
of a program fragment, in order to use this value to determine a safe upper bound on the execution
time. Relying on the existence of an accurate model of the timing behaviour of the underlying
hardware is challenging, particularly when considering parallel and heterogeneous platforms [21].
Task 4.3 will consider approaches, that integrate both the analysis of the application structure with
measurement-based techniques and determine the execution time of those paths by executing
the application on the target hardware platform (an approach as in Figure 10) [22], as well as the
use of regulation techniques, which reduce interference and therefore analysis pessimism [19].

ID REQ-TIM-08
Topic Timing and Schedulability Analysis
Subtopic Worst-case execution time

18

D3.1 Multi-criteria optimization requirements
Version 1.1

Name Worst-case execution time measurements
Description The AMPERE eco-system must support execution time profiling with

performance counters (see REQ-ENE-01).
Means for verification Inspection
Type M
Implementer(s) WP5
Source Use cases

4.5 Analysis of HW acceleration
AMPERE will use high-performance parallel platforms with heterogeneous components (CPU,
GPU, and FPGA), particularly Off-The-Shelf, which challenge both the extraction of timing
information as well as the knowledge of the details of the hardware contention mechanisms. The
AMPERE eco-system must therefore consider both static and dynamic allocation of accelerators,
with co-scheduling approaches to reduce interference [23], more dynamic and measurement-
based approaches to execution time analysis, and offload-based schedulability analysis techniques
[24].

ID REQ-TIM-09
Topic Timing and Schedulability Analysis
Subtopic Analysis of HW acceleration
Name Response-time analysis for accelerators
Description The AMPERE eco-system must support response-time analysis for both

dynamically-configured and static hardware accelerators deployed on
GPUs and FPGA fabrics.

Means for verification Test
Type M
Implementer(s) WP3
Source Use cases, Platform

ID REQ-TIM-10
Topic Timing and Schedulability Analysis
Subtopic Analysis of HW acceleration
Name Analysis of multiple offloading schemes
Description The AMPERE eco-system must support schedulability analysis of

software tasks that issue both synchronous and asynchronous
hardware acceleration requests.

Means for verification Test
Type M
Implementer(s) WP3
Source Use cases, Platform

ID REQ-TIM-11
Topic Timing and Schedulability Analysis
Subtopic Analysis of HW acceleration
Name Profiling of accelerators
Description The AMPERE eco-system should support the profiling of GPU and FPGA

hardware accelerators in terms of execution time, number of

19

D3.1 Multi-criteria optimization requirements
Version 1.1

bus/memory transactions, and resource demand, as well as FPGA
reconfiguration times

Means for verification Test
Type M
Implementer(s) WP3
Source Use cases, Platform

The optimization techniques used in AMPERE shall take into account timing constraints for FPGA-
based acceleration requests via worst-case timing analysis. The analysis to be used in AMPERE will
extend the one presented in [23], which works by studying the worst-case response times of SW-
tasks issuing HW acceleration requests.

For the purpose of the analysis, it is crucial to distinguish between synchronous and asynchronous
acceleration requests. In the former case, in [23] SW-tasks are modelled as segmented self-
suspending tasks, I.e., sequential computations where execution phases are interleaved to
suspension phases. The latter correspond to acceleration requests and their duration depend on
the time taken complete an acceleration, which includes (i) the reconfiguration time, (ii)
contention delays, and (iii) the actual execution time of the accelerator. The contention delays
change depending on whether the FPGA reconfiguration interface (FRI) supports pre-emption or
not.

Under the scheduling infrastructure described in [23], the following theorem can be proved (as a
special case of Theorem 1 in [23]) to ensure predictable worst-case delays when requesting the
execution of a HW-task under preemptive FRI management.

Consider an arbitrary acceleration request ℛ𝑠𝑠 related to HW-task 𝜏𝜏𝑠𝑠𝐻𝐻 issued by a SW-task 𝜏𝜏𝑖𝑖. Let
𝑠𝑠𝑙𝑙 = 𝑠𝑠(𝜏𝜏𝑠𝑠𝐻𝐻) be the FPGA slot to which 𝜏𝜏𝑠𝑠𝐻𝐻 is allocated to. Under preemptive FRI management, the
maximum delay incurred by ℛ𝑠𝑠 is upper-bounded by

 𝛥𝛥𝑠𝑠𝑃𝑃 = ∑ max
𝜏𝜏𝑏𝑏
𝐻𝐻∈ℋ(𝜏𝜏𝑗𝑗)

𝜏𝜏𝑗𝑗≠𝜏𝜏𝑖𝑖 �𝛥𝛥𝑏𝑏𝐸𝐸𝑙𝑙𝑁𝑁𝐸𝐸 + 𝑟𝑟𝑏𝑏� (4)

where

 𝛥𝛥𝑏𝑏𝐸𝐸𝑙𝑙𝑁𝑁𝐸𝐸 = �𝐶𝐶𝑏𝑏
𝐻𝐻 if 𝑠𝑠(𝜏𝜏𝑏𝑏𝐻𝐻) = 𝑠𝑠𝑙𝑙

0 otherwise,
 (5)

• 𝑟𝑟𝑏𝑏 denotes the worst-case reconfiguration time of HW-task 𝜏𝜏𝑏𝑏𝐻𝐻,
• ℋ(𝜏𝜏𝑗𝑗) denotes the HW-tasks associated to SW-task 𝜏𝜏𝑗𝑗, and
• 𝐶𝐶𝑏𝑏𝐻𝐻 denotes the worst-case execution time of HW-task 𝜏𝜏𝑏𝑏𝐻𝐻.

The term 𝛥𝛥𝑏𝑏𝐸𝐸𝑙𝑙𝑁𝑁𝐸𝐸 represents the interference experienced by 𝜏𝜏𝑠𝑠𝐻𝐻 due to slot contention originated by
the execution of 𝜏𝜏𝑏𝑏𝐻𝐻.

Under non-preemptive FRI management, a bound 𝛥𝛥𝑠𝑠𝑃𝑃 on the delay experienced by a HW-task is
provided by Theorem 2 in [23]. Consider an arbitrary acceleration request ℛ𝑠𝑠 for HW-task 𝜏𝜏𝑠𝑠𝐻𝐻
issued by a SW-task 𝜏𝜏𝑖𝑖. Let 𝑠𝑠𝑙𝑙 = 𝑠𝑠(𝜏𝜏𝑠𝑠𝐻𝐻) be the slot to which 𝜏𝜏𝑠𝑠𝐻𝐻 is allocated to. Under non-
preemptive FRI management, the maximum delay incurred by ℛ𝑠𝑠 is upper-bounded by

20

D3.1 Multi-criteria optimization requirements
Version 1.1

 𝛥𝛥𝑠𝑠𝑁𝑁𝑃𝑃 = 𝛥𝛥𝑠𝑠𝑃𝑃 + 𝑁𝑁𝐻𝐻𝑙𝑙𝑁𝑁𝑠𝑠𝑚𝑚 × 𝑟𝑟𝑙𝑙𝑁𝑁𝑠𝑠𝑚𝑚 (6)

where

 𝑁𝑁𝐻𝐻𝑙𝑙𝑁𝑁𝑠𝑠𝑚𝑚 = |{𝜏𝜏𝑏𝑏𝐻𝐻 ∈ 𝛤𝛤𝐻𝐻 : 𝑠𝑠(𝜏𝜏𝑏𝑏𝐻𝐻) = 𝑠𝑠𝑙𝑙}| (7)

With 𝛤𝛤𝐻𝐻 being the set of all HW-tasks, and

 𝑟𝑟𝑙𝑙𝑁𝑁𝑠𝑠𝑚𝑚 = max
𝜏𝜏𝑏𝑏
𝐻𝐻∈𝛤𝛤𝐻𝐻

{𝑟𝑟𝑏𝑏 : 𝑠𝑠(𝜏𝜏𝑏𝑏𝐻𝐻) ≠ 𝑠𝑠𝑙𝑙}. (8)

The term 𝑁𝑁𝐻𝐻𝑙𝑙𝑁𝑁𝑠𝑠𝑚𝑚 represents the number of HW-tasks allocated to slot 𝑠𝑠𝑙𝑙. The scheduling
infrastructure from [23] ensures that each of them can be directly blocked due to non-preemptable
FPGA reconfiguration by at most 𝑟𝑟𝑙𝑙𝑁𝑁𝑠𝑠𝑚𝑚 units of time, representing the largest reconfiguration time
of the HW-tasks allocated on the other slots.

In the context of the AMPERE project we plan to extend this analysis framework to support both
parallel SW-tasks and asynchronous acceleration.

 To address parallel SW-tasks it is essential to avoid a direct transformation to segmented self-
suspending tasks as, without extensions or third-party algorithm, they are capable of modeling
sequential computations only. The delay analysis shall also be extended to cope with additional
contention in serving acceleration requests caused by parallelism.

A new modeling and analysis approach is instead needed to cope with asynchronous acceleration.
Indeed, when an asynchronous acceleration request is issued, the processor can serve
computations and then later wait for the completion of the accelerated task. To address these
scenarios, we are working on a new analysis framework based on a new task model focused on
event-dependent suspensions. An example instance of the new model is sketched in the following
figure.

 Figure 11. Example of event-dependent suspensions.

Here, SW-tasks are modelled via a directed acyclic graph whose nodes denote sequential
computations to be executed on the same processor and edges denoted precedence constraints
that are satisfied with a variable but bounded delay. The first node labelled with “b” is a special
node that denotes the task release event. The variable delays that satisfy the precedence
constraints can be used to model pending HW acceleration requests, while nodes that are not on
the same path of the graph can be used to express computations on the processor that occur while
a HW acceleration is pending.

21

D3.1 Multi-criteria optimization requirements
Version 1.1

4.6 Soft real-time and trade-offs
Classical hard real-time techniques aim at guaranteeing that no timing requirement can be violated
at any time, usually because these techniques are employed in safety-critical control systems, like
in automotive or aerospace. However, this requires expensive techniques for determining worst-
case execution times and worst-case interference scenarios that may be very unlikely to happen.
Yet, accounting for these worst-case conditions in the system analysis, design and run-time
configuration, may lead to a significant amount of pessimism that may result into a relatively low
saturation of the underlying physical resources, coupled with a relatively high energy
consumption.

Soft real-time techniques [25], on the other hand, deal with systems that can tolerate infrequent
timing requirement violations, as the adopted computation and control logics are designed to
compensate, for example, the occurrence of deadline misses. The typical example is the one of
real-time multimedia, virtual and augmented reality and anytime computing, in which deadline
misses can be compensated for example with frame skipping or lowering the quality of the
computed outputs, or proper trade-offs can be sought between quality of the computed output vs
resource requirements. This enables trading predictability for efficiency with the adoption of
design and profiling techniques that aim at identifying resource requirements and interference
scenarios that are likely to occur up to a sufficiently high probability, avoiding the expensive
computation of precise worst-case bounds (i.e., focusing on experimental maximum computing
times, or high percentiles of the expected computing times distributions, as opposed to computing
WCET bounds), and employing at run-time adaptive techniques that allow for dealing with those
infrequent times when timing requirements are violated. For example, with reservation-based
scheduling, a number of techniques exist [26, 27] for on-line adaptation of the allocated reserved
resources (e.g., feedback-based control of the reserved budget), leading to a controlled maximum
percentage of deadline misses, beyond which the system may exhibit a too unstable behaviour.

As high-performance computing platforms are more and more widespread in embedded real-time
applications, it becomes increasingly important to support the coexistence on the same platform
of hard real-time components, typically employing more easily analysable algorithms deployed in
simpler software architectures, alongside with soft real-time components that may be
characterized by more sophisticated computations using complex software stacks. Furthermore,
the employment of soft real-time techniques allows for designing off-line analysis and on-line
adaptive frameworks that enable trading timeliness of real-time applications for efficiency in
resource usage and energy consumption within the platform.

ID REQ-TIM-12
Topic Timing and Schedulability Analysis
Subtopic Soft Real-Time
Name Coexistence of soft and hard real-time components
Description The AMPERE eco-system must support the coexistence of hard and soft

real-time components on the same platform, in a way that ensures the
respect of the hard and soft timing requirements in place.

Means for verification Test
Type M
Implementer(s) WP5
Source Use cases, Platform

22

D3.1 Multi-criteria optimization requirements
Version 1.1

Thanks to the isolation guaranteed by REQ-TIM-12 just introduced, it will be possible to create
spatial/temporal partitions of the system resources so that in AMPERE it will be possible to develop
analysis techniques in WP3 that independently analyse the hard real-time and the soft real-time
domains. Note that this requirement is related to REQ-TIM-05, but from the perspective of hard
vs. soft real-time, and not application criticality.

ID REQ-TIM-13
Topic Timing and Schedulability Analysis
Subtopic Soft Real-Time
Name Probabilistic analysis of soft real-time applications
Description The AMPERE eco-system should support probabilistic analysis of soft

real-time applications, given a probabilistic characterization of the
processing times and/or expectable interference terms.

Means for verification Test
Type S
Implementer(s) WP3
Source Use cases, Platform

As mentioned, in soft real-time systems it may be important to support on-line refinement and
adaptation of the system parameters, as sensed at run-time while applications are running, and
employing a feedback-based control logic that reviews dynamically the system configuration as
needed. This can include prediction and estimation logic that refines knowledge on the resource
requirements of the actively running application components, as well as control logic specific to
each soft real-time application component to drive its associated future resource allocation, as
well as a control logic to drive and adapt the energy tunable in the system according to given
system-level goals. Such an approach can be built by extending techniques like [28], among others.

For this to be possible, the underlying platform needs to support proper sensors and actuation
knobs (as noted in REQ-TIM-08).

ID REQ-TIM-14
Topic Timing and Schedulability Analysis
Subtopic Soft Real-Time
Name Per-entity resource consumption monitoring
Description The AMPERE eco-system should support on-line monitoring of the

resources consumption of individual real-time components
Means for verification Test
Type S
Implementer(s) WP5
Source Use cases, Platform

For particularly dynamic workloads, the resource consumption levels for real-time application
components in the future may non-necessarily reflect exactly what has been recently measured,
or anyway it may be necessary to develop specific techniques to better foresee/predict the future
evolution of the workload, i.e., considering linear regression or percentile estimation techniques
or relatively simple techniques with sufficiently low associated overheads [26].

23

D3.1 Multi-criteria optimization requirements
Version 1.1

ID REQ-TIM-15
Topic Timing and Schedulability Analysis
Subtopic Soft Real-Time
Name Per-entity resource consumption estimation and prediction
Description The AMPERE eco-system could support on-line estimation and

prediction of the expected resources consumption of individual real-
time components in the future, exploiting information coming from the
on-line monitoring of REQ-TIM-14.

Means for verification Test
Type C
Implementer(s) WP5
Source Use cases, Platform

ID REQ-TIM-16
Topic Timing and Schedulability Analysis
Subtopic Soft Real-Time
Name Adaptability in resource allocation
Description The AMPERE eco-system should support the possibility to adapt

dynamically the resources allocated to the soft real-time tasks
Means for verification Test
Type S
Implementer(s) WP5
Source Use cases, Platform

ID REQ-TIM-17
Topic Timing and Schedulability Analysis
Subtopic Soft Real-Time
Name Soft real-time controllers
Description The AMPERE eco-system could include controllers employing logic to

control dynamically the resource allocation depending on the
monitored and/or foreseen resource consumption (REQ-TIM-14 and
REQ-TIM-15), so to meet precise timeliness requirements for the
application.

Means for verification Test
Type C
Implementer(s) WP5
Source Use cases, Platform

24

D3.1 Multi-criteria optimization requirements
Version 1.1

5 Software and Hardware Resilient Methods
This section summarizes the requirements related to resilience and fault-tolerance, collected from
the work in WP1 (Task T1.1 “System model requirement specification and use case definition” [2])
as well as from WP2 (Task 2.1 “Model transformation requirements specification” [3]), WP4 (Task
4.1 “Run-time requirement specification” [4]) and the platforms from WP5 (Task 5.1 “Platform
Selection” [5]).

Fault-tolerance and resiliency are aspects of the dependability of systems targeted at software and
at hardware level. Furthermore, the different components of the software stack (e.g., parallel
programming model, runtime, operating system, etc.) can include techniques to enhance these
aspects of the system.

The remainder of the section introduces first the particularities of Cyber-Physical Systems (CPS)
regarding resiliency; then, an overview of the most common hardware and software techniques
towards fault tolerance is introduced; after that, fault tolerance at programming model level is
shown for task-based models in general, and OpenMP in particular; finally, the approach for fault
tolerance in AMPERE is explained, including particular requirements of the project and considered
techniques.

5.1 Resiliency in CPS
CPSs in general, and the safety-critical components of CPSs in particular, need to keep delivering
their functionality in the presence of run-time faults. The shrinking size of the components of the
system coupled with the external noise and radiation (e.g., power supplies variations, lightning or
alpha particles hitting the transistors of the processor) increases the vulnerability of the system to
transient faults caused by a transistor’s state flipping. The system is also vulnerable to permanent
faults (e.g., short circuit) and intermittent faults (e.g., loose electrical connection).

AMPERE addresses two type of CPSs, as defined in the use cases targeted in the project:
automotive and railway systems. In both scenarios, the heavy use of wireless communications
opens the door to cyber-attacks, and thus jeopardizes the security of the system. As a
consequence, the robustness and the recovery capabilities of the system are a paramount aspect
of these systems.

MDE is a common approach for the development of CPSs. This design flow may prevent several
faults by allowing verification and validation processes at a model level. Additionally, MDE allows
the use of code synthesis tools to generate the final code to be deployed on the target platform.
Unfortunately, faults cannot be completely prevented, and particularly safety and reliability are
identified as non-functional requirements difficult to fulfil even in MDE approaches [29].

Several works target the enhancement of the expressiveness of modelling languages regarding
dependability, including fault tolerance concepts. Relevant examples are: the work extending
Simulink in order to support the specification of common fault-tolerance design patters, like
sparing, comparing and voting, so the extended models can tolerate hardware faults [30]; the work
extending the Architecture Analysis and Design Language (AADL) to assist dependability analysis
at the architecture level 11; and the work extending UML/Marte with a dependability profile
covering fault tolerance concepts [31]. However, these proposals require considerable amounts of

25

D3.1 Multi-criteria optimization requirements
Version 1.1

manual effort to extend the mentioned models. Furthermore, they consider traditional DMSL
defining concurrency, but not including parallel programming.

5.2 Fault tolerance techniques: overview
Fault tolerance is mostly achieved by introducing redundancy in software or hardware [32]. There
are several forms of redundancy. This section introduces the most relevant ones for achieving fault
tolerant systems, organized as hardware and software techniques.

5.2.1 Hardware techniques
Hardware fault tolerance techniques can be divided into three groups:

• Fault-masking. This passive, or static, technique consists on hiding failures so the system
can achieve fault tolerance without requiring any action. It is based on replicating resources
and computation, and then using voting mechanisms to decide the correct result.

• Reconfiguration. This active, or dynamic, technique consists of four steps: (1) detection,
i.e., recognize a fault has occurred; (2) location, i.e., determine where a fault has occurred;
(3) containment, i.e., isolate a fault and prevent te effects of that fault from propagating
through the system; and (4) recovery, i.e., regain operational status via reconfiguration
(modifying the use of components of the system).

• Hybrid techniques. These techniques, combining static and dynamic approaches, entail a
high cost, but also provide better evidence of fault-tolerance. An example is self-purging
redundancy, where all units participate actively in the system and also have the capability
to remove themselves from the system in the occurrence of faults.

5.2.2 Software techniques
The most common software techniques for fault-tolerant scheduling are the following:

• Checkpointing. This is a backward error recovery technique that consists on periodically
saving the state of the system in a checkpoint; then, when a fault occurs, the system state
is replaced by the last checkpoint and the execution continues.

• Replication consists on copying parts of an application; it can be active replication (a.k.a.
spatial or structural replication), when multiple copies of the replicated part are executed
in parallel, or passive replication (a.k.a. temporal replication), when a backup copy is run
only if the original fails, so they never run in parallel. While spatial replication typically leads
to increased makespan, i.e., the total length of the schedule, until the last processing unit
has finished, temporal replication, on the other hand, adds overhead that might be
unnecessary if no faults occur, as well as increase the energy consumption of the
computation.

5.3 Fault tolerance in AMPERE
This section lists the requirements of the AMPERE project regarding fault tolerance, and describes
the techniques envisioned in the project for addressing this non-functional requirement across the
whole software ecosystem.

26

D3.1 Multi-criteria optimization requirements
Version 1.1

5.3.1 AMPERE requirements regarding fault tolerance
The requirements introduced by WP3 regarding fault tolerance are summarized as follows.

ID REQ-FAU-01
Topic Fault tolerance
Subtopic Support at HW level
Name Access to hardware failures
Description The AMPERE eco-system must include fault tolerant architectures. It

must also support techniques for fault detection in all the hardware
components.

Means for verification Inspection
Type M
Implementer(s) WP3,WP5
Source Platform

ID REQ-FAU-02
Topic Fault tolerance
Subtopic Support at programming model level
Name Static analysis based on the taskgraph
Description The AMPERE eco-system must provide the static analysis techniques for

analysing the parallel execution from a programming model
perspective to decide the best places to automatically introduce fault
tolerance techniques like task redundancy and checkpointing.

Means for verification Test
Type M
Implementer(s) WP3, WP2
Source Programming model

ID REQ-FAU-03
Topic Fault tolerance
Subtopic Support at runtime level
Name Dynamic reconfiguration
Description The AMPERE runtime system, including the parallel runtime, the OS and

the hypervisor, should include mechanisms for automatic
reconfiguration in the occurrence of a failure in some hardware
component.

Means for verification Test
Type M
Implementer(s) WP3, WP4
Source Runtime

5.3.2 Fault tolerance in task-based parallel programming models
The parallelism exposed in parallel applications can often be decomposed into a set of tasks with
a series of input and output constraints. This structure can be modelled as a taskgraph, where
nodes are tasks, and edges are dependencies (or ordering constraints) between tasks.

27

D3.1 Multi-criteria optimization requirements
Version 1.1

Replication can be naïvely performed on a taskgraph by duplicating all tasks in the graph [33].
Then, scheduling mechanisms can be applied to (1) ensure only one instance, the original or the
duplicated, and (2) decide the better scheduling of the taskgraph with duplicated tasks in order to
minimize idle resources, and to eliminate overhead in fault-free. The decision of duplicating all
tasks may have however a severe impact in the energy consumption of the application, and again
scheduling mechanisms are needed for frequency scaling [34].

Some features of the taskgraph, are however interesting when considering software techniques
for fault tolerance. The most relevant are the following:

• The depth of tasks, or task height. The height of a task is recursively computed as the
maximum height of all its immediate successors +1. This information has been exploited to
create partitions of the taskgraph (which, by definition, contains tasks independent among
them) and schedule the tasks contained in each partition together with their duplicates in
order to achieve fault tolerance in multiprocessor systems [35].

• The cost of task communications, or communication weight. This aspect describes the
amount of data flowing through an edge of the graph, i.e., the amount of data produced
by the predecessor task and consumed by the successor task. This information is further
valuable for refining timing analysis and reducing the energy consumption [36].

• The cost of tasks, or task weight. The processing time of tasks on a processor may differ
from those of the same tasks on another processor. The cost of tasks, together with the
cost of the communications, has been previously used in proposed scheduling algorithms
to prioritize tasks in fault-tolerant systems [37].

• The synchronization points. Synchronizations such as barriers and locks pose two important
issues when considering fault-tolerant system: causality related dependencies and
resource contention. Previous works analyse these issues in order to allow checkpointing
tasks at any time, even when holding or waiting for locks and barriers [38].

OpenMP [39] is the parallel programming model considered in the AMPERE project for exploiting
performance in parallel architecture by virtue of its many benefits: productivity, portability and
heterogeneous support, among others. OpenMP allows describing the behaviour of a program as
a taskgraph by means of the tasking model. In OpenMP, this representation is called task
dependency graph (TDG). Figure 12 shows a snippet (left) of an OpenMP application, adapted from
the DAPHNE benchmark suite [40] to use OpenMP tasks instead of OpenMP worksharings (e.g.,
for loops), and the corresponding TDG (right).

28

D3.1 Multi-criteria optimization requirements
Version 1.1

Although OpenMP focuses on exploiting performance on HPC systems, there are several aspects
of the specification and some proposed runtime extensions that provide OpenMP frameworks
with capabilities for fulfilling non-functional requirements such as fault tolerance:

• Features towards fault tolerance in the OpenMP specification.

OpenMP provides cancellation constructs as a step for addressing fault tolerance. These
are the cancel construct, that activates the cancellation of the innermost enclosing
region, considering parallel and taskgroup regions, among others; and the
cancellation point construct, that introduces a user-defined point at which the cancellation
of the innermost enclosing region can be checked.

Cancellations are however insufficient for providing a fault-tolerant system in the presence
of critical tasks. There is already an extensive proposal towards fault tolerance based on
user-defined error handling, i.e., mechanisms offer at a user-level for specifying a particular
action when a failure occurs during the execution of a given computational unit [41]. The
error model proposed for OpenMP includes three different features: (1) constructs, like the
already supported cancel construct, to stop a given region; (2) return codes, suitable for
exception-unaware languages; and (3) callbacks, suitable for exception-aware languages.

Another interesting mechanism to support fault tolerance is based on the concept of
alternative task [42]. This is a form of spatial replication that uses different
implementations for replicating a task. OpenMP defines the metadirective and the
declare variant directives. The former is a directive that can specify multiple directive
variants that can be conditionally selected. The latter declares a specialized variant of a

… extractEuclideanClusters(…)
 #pragma omp parallel taskloop
 for (int i = 0; i < cloud_size; ++i)
 { … }
 #pragma omp parallel taskloop
 for (int i = 0; i < cloud_size; ++i)
 { … }
 omp_target_alloc(…);
 omp_target_memcpy(…);
 for (int i = 0; i < cloud_size; ++i) {
 #pragma omp target map(to: …) map(from: …)
 {
 #pragma omp teams distribute parallel for
 for (int i = 0; i < cloud_size; ++i) {
 { … }
 }
 }
 omp_target_free(…);
}

#pragma omp task
… sort ()
{…}

#pragma omp task
… color()
{…}

Figure 12. OpenMP Euclidean Cluster benchmark from the DAPHNE suite: code snippet (left) and TDG (right).

29

D3.1 Multi-criteria optimization requirements
Version 1.1

function and specifies the context in which it is used. OmpSs has a feature similar to the
declare variant directive, the implements clause that, attached to the target
construct can be used to specify that the annotated task is an implementation of another
task [43].

• Fault tolerant OpenMP runtime frameworks

Application-Level Checkpointing (ALC) is a mechanism based on saving the application-level
state (i.e., heap, global and local variables, and call stack). It is an alternative to the
commonly used System-Level Checkpointing (SLC), based essentially in core-dump-style
snapshots of the computational state of the machine, which is very machine and OS-
dependant. There is a proposal based on ALC that aims at providing self-checkpointing. It
requires user intervention to decide the suitable places for checkpointing [44]. This
proposal has been further enhanced with compiler analysis and optimizations to reduce
the amount of data checkpointed [45, 46].

With the objective of reducing the overheads introduced by checkpointing techniques, and
so increase the scalability of the system, redundant threads for parallel regions have been
proposed [47]. This work uses spatial redundancy; more specifically it creates three replicas
of each fault tolerant section, and run them in three different threads. Then, a comparison
and vote step decides the final result. The redundancy is applied to all parallel regions of
the OpenMP program, so the structure of the taskgraph is not exploited.

Finally, there are also proposals for task level redundancy [48,49]. These works are based
on the concept of reliable task, which defines a unit of computation that has the ability of
detecting and recovering from a fault. For each reliable task in the system, three redundant
tasks are created. At the end of their execution, a compare and vote step synchronizes the
results providing the correct one. This method however does not ensure correctness if all
replicated tasks mismatch their outputs. Results show a 95% success ratio and a maximum
performance degradation of 1,8x.

In the AMPERE ecosystem, the domain-specific modelling language, the synthesis tools and
compilers, and the multi-criteria optimization tools will communicate by means of meta models
mainly representing a TDG. For this reason, the fault tolerance techniques that the AMPERE project
will consider are based on the information that can be represented in the TDG, as well as on how
this information can be exploited at a parallel programming model level, and respected across the
whole runtime system. Overall, the research lines include:

• Use the structure of the TDG to determine the best places to apply fault tolerant
mechanisms. As endorsed by previous research at a dynamic level, these points are:

o Barriers and other synchronization constructs (e.g., taskwaits, taskgroups, etc.) are
suitable points to perform automatic checkpointing because the amount of on-the-
fly data can be negligible compared to those parts of the TDG exposing more
parallelism.

o The cost of tasks is also an important aspect to consider in an automatic task
replication mechanism. In this regard, tasks with higher costs can be spatially
replicated or provide alternatives, while tasks with lower costs can be temporally
replicated.

o The cost of communications is an important aspect to take into account for the
scheduling of replicated tasks. For example, in the occurrence of a transient fault, a

30

D3.1 Multi-criteria optimization requirements
Version 1.1

replicated task could be scheduled in the same processor it failed in order to avoid
the cost of moving huge amounts of data.

• Mix user-defined exception handling and alternative task techniques [50]. The proposal to
extend OpenMP with callbacks can be combined with alternative implementations of a
task, via the declare variant directive, in order to specify a workflow to be launched
to deal with a failure in a specific task. This workflow can include CPU, GPU and FPGA
versions of the same task.

31

D3.1 Multi-criteria optimization requirements
Version 1.1

6 Conclusion
This document presented the requirements related to the multi-criteria optimization associated
to the non-functional constraints considered in AMPERE (energy-efficiency, time-criticality and
fault tolerance), consolidated from the analysis of the project use cases. The description of the
requirements includes the concrete criteria and metrics, as well as the means of verification, for
the evaluation of the project results.

The document also identifies the initial techniques that will be considered in the scope of the
development of the project, related to the considered energy models, the timing and
schedulability analyses and the software and hardware resilient methods. These techniques will
provide the required guarantees to the non-functional requirements of the targeted systems,
whilst targeting high-performance parallel execution.

32

D3.1 Multi-criteria optimization requirements
Version 1.1

Acronyms and Abbreviations

- ALU – Arithmetic Logic Unit
- CPS – Cyber-Physical Systems
- CPU – Central Processing Unit
- DVFS – Dynamic Voltage and Frequency Scaling
- FPGA – Field Programmable Gate Array
- GPU – Graphics Processing Unit
- KPI – Key Performance Indicator
- MDE – Model Driven Engineering
- MS – Milestones
- PE – Processing Element
- PMU - Performance Monitoring Unit
- RISC-V - open instruction set architecture based on Reduced Instruction Set Computer (RISC)
- SIMD – Single Instruction Multiple Data
- WCET – Worst-Case Execution Time
- WP – Work Package

33

D3.1 Multi-criteria optimization requirements
Version 1.1

References
[1] Grant Agreement number: 871669 — AMPERE — H2020-ICT-2018-20/H2020-ICT-2019-2, October 2019

[2] AMPERE Consortium, Deliverable D1.1, “System models requirement and use case selection”,
September 2020

[3] AMPERE Consortium, AMPERE Deliverable D2.1, “Model transformation requirements”, July 2020

[4] AMPERE Consortium, AMPERE Deliverable D4.1, “Run-time architecture”, July 2020

[5] AMPERE Consortium, AMPERE Deliverable D5.1, “Reference parallel heterogeneous hardware
selection”, July 2020

[6] F. Pittino, F. Beneventi, A. Bartolini and L. Benini, "A Scalable Framework for Online Power Modelling of
High-Performance Computing Nodes in Production," 2018 International Conference on High Performance
Computing & Simulation (HPCS), Orleans, 2018, pp. 300-307, doi: 10.1109/HPCS.2018.00058.

[7] M. Witkowski, A. Oleksiak, T. Piontek, and J. Wglarz, “Practical power consumption estimation for real
life hpc applications,” Future Generation Computer Systems, vol. 29, no. 1, pp. 208 – 217, 2013, including
Special section: AIRCC-NetCoM 2009 and Special section: Clouds and Service-Oriented Architectures

[8] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S. H., & Skadron, K. (2009, October). Rodinia:
A benchmark suite for heterogeneous computing. In 2009 IEEE international symposium on workload
characterization (IISWC) (pp. 44-54). Ieee.

[9] Balsini, A., Pannocchi, L., & Cucinotta, T. (2019). Modeling and simulation of power consumption and
execution times for real-time tasks on embedded heterogeneous architectures. ACM SIGBED Review, 16(3),
51-56.

[10] Maurya, A.K., Modi, K., Kumar, V. et al. Energy-aware scheduling using slack reclamation for cluster
systems. Cluster Comput 23, 911–923 (2020). https://doi.org/10.1007/s10586-019-02965-7

[11] Ramesh, P., & Ramachandraiah, U. (2018). Energy aware proportionate slack management scheduling
for multiprocessor systems. Procedia computer science, 133, 855-863.

[12] Forsberg, B., Lampka, K., & Spiliopoulos, V. (2016, October). An online overclocking scheme for bursty
real-time tasks and an evaluation of its thermal impact. In Proceedings of the 14th ACM/IEEE Symposium
on Embedded Systems for Real-Time Multimedia (pp. 104-113).

[13] M. A. Serrano, A. Melani, M. Bertogna and E. Quinones, "Response-time analysis of DAG tasks under
fixed priority scheduling with limited preemptions," 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), Dresden, 2016, pp. 1066-1071.

[14] P. Burgio, M. Bertogna, A. Melani, E. Quinones, M. A Serrano, “Mapping, Scheduling, and Schedulability
Analysis”. In Pinho, L, Quiñones, E, Bertogna, M, Marongiu, A, Nélis, V, Gai, P, Sancho, J, (Eds) "High-
Performance and Time-Predictable Embedded Computing", Jul, 2018, DOI: 10.13052/rp-9788793609624.

[15] R. Ernst, S. Kuntz, S. Quinton, M. Simons. “The Logical Execution Time Paradigm: New Perspectives for
Multicore Systems (Dagstuhl Seminar 18092)”. Dagstuhl Reports, Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2018, 8, pp.122 - 149. ff10.4230/DagRep.8.2.122ff. ffhal01956964f

[16] Cui, J., Tian, C., Zhang, N. et al. Verifying schedulability of tasks in ROS-based systems. J Comb Optim
37, 901–920 (2019). https://doi.org/10.1007/s10878-018-0328-0

[17] G. Lipari and E. Bini, "A Framework for Hierarchical Scheduling on Multiprocessors: From Application
Requirements to Run-Time Allocation," 2010 31st IEEE Real-Time Systems Symposium, San Diego, CA, 2010,
pp. 249-258, doi: 10.1109/RTSS.2010.12.

https://doi.org/10.1007/s10586-019-02965-7
https://doi.org/10.1007/s10878-018-0328-0

34

D3.1 Multi-criteria optimization requirements
Version 1.1

[18] G. Lipari and E. Bini, "Resource partitioning among realtime Applications," in Proc. of Euromicro Conf.
on Real-Time Systems (ECRTS'03), July 2003.

[19] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo and L. Sha, "MemGuard: Memory bandwidth reservation
system for efficient performance isolation in multi-core platforms," 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), Philadelphia, PA, 2013, pp. 55-64, doi:
10.1109/RTAS.2013.6531079.

[20] Robert I. Davis and Alan Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems.
ACM Comput. Surv. 43, 4, Article 35 (October 2011), 44 pages.
DOI:https://doi.org/10.1145/1978802.1978814

[21] V. Nelis, P. M. Yomsi, and L. M. Pinho, “Methodologies for the WCET Analysis of Parallel Applications
on Many-core Architectures,” in The Euromicro Conference on Digital System Design (DSD 2015), 2015.

[22] Nélis, V, Yomsi, P, Pinho, L, "Timing Analysis Methodology". In Pinho, L, Quiñones, E, Bertogna, M,
Marongiu, A, Nélis, V, Gai, P, Sancho, J, (Eds) "High-Performance and Time-Predictable Embedded
Computing", Jul, 2018, DOI: 10.13052/rp-9788793609624.

[23] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni and G. Buttazzo, "A Framework for Supporting
Real-Time Applications on Dynamic Reconfigurable FPGAs," 2016 IEEE Real-Time Systems Symposium
(RTSS), Porto, 2016, pp. 1-12, doi: 10.1109/RTSS.2016.010.

[24] M. A. Serrano and E. Quiñones, "Response-Time Analysis of DAG Tasks Supporting Heterogeneous
Computing," 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), San Francisco, CA, 2018, pp.
1-6, doi: 10.1109/DAC.2018.8465575.

[25] G. Buttazzo, G. Lipari, L. Abeni and M. Caccamo. “Soft Real-Time Systems – Predictability vs. Efficiency,”
Springer, Boston, MA, 2005.

[26] L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, L. Palopoli, "QoS Management through adaptive
reservations," Real-Time Systems Journal, Vol. 29, Issue 2-3, March 2005, ISSN:0922-6443, Kluwer
Academic.

[27] T. Cucinotta, F. Checconi, L. Abeni, L. Palopoli, "Self-tuning Schedulers for Legacy Real-Time
Applications," in Proceedings of the 5th ACM European Conference on Computer Systems (EuroSys 2010),
Paris, France, April 2010.

[28] T. Cucinotta, L. Palopoli, L. Abeni, D. Faggioli, G. Lipari, "On the integration of application level and
resource level QoS control for real-time applications," IEEE Transactions on Industrial Informatics, Vol. 6,
No. 4, November 2010.

[29] Ameller, D., Franch, X., Gómez, C., Martínez-Fernández, S., Araujo, J., Biffl, S., . . . Méndez, D. a. (2019).
Dealing with non-functional requirements in model-driven development. Transactions on Software
Engineering. IEEE.

[30] Ding, K., Morozov, A., & Janschek, K. (2018). More: Model-based redundancy for Simuklink.
International Conference on Computer Safety, Reliability, and Security (pp. 250--264). Springer.

[31] Bernardi, S., Merseguer, J., & Petriu, D. C. (2011). A dependability profile within MARTE. Software &
Systems Modeling, 313--336.

[32] Hu, T., Bertolotti, I. C., Navet, N., & Havet, L. (2020). Automated fault tolerance augmentation in model-
driven engineering for CPS. Computer Standards \& Interfaces, 103424.

[33] Fechner, B., Honig, U., Keller, J., & Schiffmann, W. (2008). Fault-tolerant static scheduling for grids.
International Symposium on Parallel and Distributed Processing (pp. 1--6). IEEE.

35

D3.1 Multi-criteria optimization requirements
Version 1.1

[34] Eitschberger, P., & Keller, J. (2013). Energy-efficient and fault-tolerant taskgraph scheduling for
manycores and grids. European Conference on Parallel Processing (pp. 769--778). Springer.

[35] Hashimoto, K., Tsuchiya, T., & Kikuno, T. (2002). Effective scheduling of duplicated tasks for fault
tolerance in multiprocessor systems. Transactions on Information and Systems, 525--534.

[36] Cichowski, P., & Keller, J. (2013). Efficient and fault-tolerant static scheduling for grids. International
Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (pp. 1439--1448). IEEE.

[37] Chen, C.-Y. (2015). Task scheduling for maximizing performance and reliability considering fault
recovery in heterogeneous distributed systems. Transactions on Parallel and Distributed Systems, 521--532.

[38] Badrinath, R., & Morin, C. (2004). Locks and barriers in checkpointing and recovery. International
Symposium on Cluster Computing and the Grid (pp. 459--466). IEEE.

[39] OpenMP ARB. (2018, November). OpenMPApplication Programming Interface. Retrieved from
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

[40] Sommer, L., Stock, F., Solis-Vasquez, L., & Koch, A. (2019). DAPHNE-An automotive benchmark suite
for parallel programming models on embedded heterogeneous platforms: work-in-progress., (pp. 1--2).

[41] Wong, M., Klemm, M., Duran, A., Mattson, T., Haab, G., de Supinski, B. R., & Churbanov, A. (2010).
Towards an error model for OpenMP. International Workshop on OpenMP (pp. 70--82). Springer.

[42] Hwang, S., & Kesselman, C. (2003). Grid workflow: a flexible failure handling framework for the grid.
High Performance Distributed Computing (pp. 126--137). IEEE.

[43] Planas, J., Badia, R. M., Ayguade, E., & Labarta, J. (2013). Self-adaptive OmpSs tasks in heterogeneous
environments. International Symposium on Parallel and Distributed Processing (pp. 138--149). IEEE.

[44] Bronevetsky, G., Marques, D., Pingali, K., Szwed, P., & Schulz, M. (2004). Application-level
checkpointing for shared memory programs. ACM SIGPLAN Notices, 235--247.

[45] Bronevetsky, G. a. (2006). Experimental evaluation of application-level checkpointing for OpenMP
programs. International Conference on Supercomputing, (pp. 2--13).

[46] Bronevetsky, G., Marques, D., Pingali, K., McKee, S., & Rugina, R. (2009). Compiler-enhanced
incremental checkpointing for openmp applications. International Symposium on Parallel & Distributed
Processing (pp. 1--12). IEEE.

[47] Fu, H., & Ding, Y. (2010). Using redundant threads for fault tolerance of OpenMP programs.
International Conference on Information Science and Applications (pp. 1--8). IEEE.

[48] Tahan, O., & Shawky, M. (2012). Using dynamic task level redundancy for openmp fault tolerance.
International Conference on Architecture of Computing Systems (pp. 25--36). Springer.

[49] Shawky, M., & Oussama, T. (2012). Using dynamic task level redundancy for openmp fault tolerance.
International Conference on Architecture of Computing Systems (pp. 25--36). Springer.

[50] Hwang, S., & Kesselman, C. (2003). Grid Workflow:A Flexible Failure Handling Framework for the Grid.
High Performance Distributed Computing (pp. 126--137). IEEE.

	1 Executive Summary
	2 Introduction
	2.1 Document structure

	3 Energy Models
	3.1 Model Rationale
	3.2 On the importance of representative counters
	3.3 Impact to Offline Optimization Stage

	4 Timing and Schedulability Analysis
	4.1 Time-criticality requirements
	4.2 Models of computation
	4.3 Runtime impact
	4.4 Execution time
	4.5 Analysis of HW acceleration
	4.6 Soft real-time and trade-offs

	5 Software and Hardware Resilient Methods
	5.1 Resiliency in CPS
	5.2 Fault tolerance techniques: overview
	5.2.1 Hardware techniques
	5.2.2 Software techniques

	5.3 Fault tolerance in AMPERE
	5.3.1 AMPERE requirements regarding fault tolerance
	5.3.2 Fault tolerance in task-based parallel programming models

	6 Conclusion
	Acronyms and Abbreviations
	References

