
D4.4 Evaluation of run-times
Version 1.0

Documentation Information

Contract Number 871669

Project Webpage https://www.ampere-euproject.eu/

Contractual Deadline 30.06.2023

Dissemination Level Public (PU)

Nature Report

Authors Tommaso Cucinotta, Gabriele Ara (SSSA)

Contributors Francesco Paladino and Alexandre Amory (SSSA)
Sara Royuela and Eduardo Quiñones (BSC)
Sergio Mazzola (ETHZ)
Tiago Carvalho, Mohammad Samadi and Luis Miguel Pinho (ISEP)
Enkhtuvshin Janchivnyambuu (SYS)

Reviewer Darshak Sheladiya (SYS)

Keywords run-time energy management, FPGA, dynamic partial reconfiguration, perfor-
mance counters

AMPERE project has received funding from the European Union’s Horizon 2020
research and innovation programme under the agreement No 871669.

Ref. Ares(2023)4593288 - 03/07/2023

https://www.ampere-euproject.eu/

D4.4 - Evaluation of run-times
Version 1.0

Change Log

Version Description Change

V0.1 Initial version with skeleton and section assignments.

V0.2 First round of contributions from partners.

V0.3 Refined contributions from partners.

V0.4 All contributions included. Ready for review.

V1.0 Final version with reviewers’ comments included.

ii

D4.4 - Evaluation of run-times
Version 1.0

Table of Contents

1 Executive Summary . 1

2 Updated AMPERE run-time architecture . 2
2.1 AMPERE run-time architecture overview . 2
2.2 FRED porting and integration with PikeOS/ElinOS . 3
2.3 Linux kernel changes for energy-aware real-time scheduling 4

2.3.1 Swapping the RT and SCHED_DEADLINE scheduling classes 4
2.3.2 Fixing energy-aware real-time scheduling on Linux 5

2.4 Run-time mechanisms for resilience . 6
2.5 Run-time energy monitoring . 7

2.5.1 Updates to the energy model . 7
2.5.2 Evaluation of the energy monitoring framework . 7
2.5.3 Support for other platforms . 8

3 Evaluation of predictability of real-time tasks . 9
3.1 Implementing Multi-DAG Real-Time Application Scenarios on Linux 9

3.1.1 Calibrating real-time tasks execution time . 9
3.1.2 Accelerated tasks implementation . 11
3.1.3 Jetson Xavier AGX . 11

3.2 Evaluating APEDF performance . 12
3.3 Experimental Evaluation on Linux . 14

3.3.1 Evaluation on a ODROID-XU4 Platform . 14
3.3.2 Evaluation on the Xilinx UltraScale+ Platform . 16
3.3.3 Evaluation of the PCC Use-Case . 18

3.4 Experimental evaluation of dynamic mapping algorithms . 20

4 Conclusions . 23

5 Acronyms and Abbreviations . 24

6 References . 25

iii

D4.4 - Evaluation of run-times
Version 1.0

1 Executive Summary
This document constitutes Deliverable D4.4. Evaluation of run-times, built upon the work carried out in WP4,
with contributions from several other WPs. The document is provided in the format of a report, and it was
due on project month 36 (December 2022), extended to month 42 (June 2023) after the 6-months extension
of the project duration agreed with the EC.
D4.4 presents the last updates on the components included in the run-time architecture of AMPERE in the
last months of the project, summarizing the activities carried out by AMPERE partners in Task 4.5 “Run-time
mechanisms for safety/security” and Task 4.6 “Run-time validation”. It shows results from a set of experi-
ments providing an experimental evaluation of the mechanisms realized in WP4, including energy manage-
ment, scheduling algorithms for predictable computation and communication, segregation mechanisms for
safety/security support, and mechanisms for resilience support.

1

D4.4 - Evaluation of run-times
Version 1.0

2 Updated AMPERE run-time architecture

2.1 AMPERE run-time architecture overview

Figure 1: The AMPERE run-time architecture.

The AMPERE general run-time architecture is depicted in Figure 1, where the major run-time components
and mechanisms realized throughout the whole software stack are highlighted. The final runtime architecture
needs some customization for the two reference boards considered in the project, the Xilinx UltraScale+ and
the NVIDIA Jetson AGX, as not all components can be deployed on both boards. Figure 1 refers purposely to the
Xilinx platformwith FPGA acceleration, where the architecture is enrichedwith the PikeOS real-time hypervisor
supporting separation among the Linux domain and the hard real-time Erika RTOS domain. However, the
reference architecture for the Jetson Xavier AGX board with GPU acceleration, is obtained simply as the Linux
partition in the same figure, deployed on bare-metal, with the additional detail that the Linux distribution is a
Ubuntu-based distribution enriched by NVIDIA with a set of development tools for CUDA. The CUDA run-time
components can be leveraged by the libomptarget components of the OpenMP run-time, for GPU offloading.
More precisely, Table 1 summarizes the software components and their version(s) that have been included in
the final AMPERE run-times for the two boards. A number of components are actually modifications made by
AMPERE partners to standard components:

• the Linux kernel has been modified to include the APEDF variant of the SCHED_DEADLINE real-time CPU
scheduler, the APEDF-aware modifications to the schedutil component handling DVFS on Linux, and
the runmeter energy monitor within the kernel, and its configuration has been customized in ELinOS to
support the deployment under PikeOS;

• the OpenMP run-time is a modified version of the version coming with clang and llvm, version 17.0.0,
supporting replication of runnables, variants constructs for hardware offloading, static mapping, in-
tegration with the Extrae monitoring framework, and the ability to deploy worker threads under

2

D4.4 - Evaluation of run-times
Version 1.0

Table 1: Software components and their versions in the AMPERE runtimes

Component Version(s) on the US+ Version(s) on the AGX Notes
PikeOS hypervisor 5.0 –

ELinOS 7.0 – Linux distribution for Xilinx UltraScale+
under PikeOS

Erika RTOS Internal – See D5.4 [1]
Peta Linux OS 2020.2 – Linux distribution for Xilinx UltraScale+

bare-metal
Ubuntu Linux OS – 20.04.6 LTS Includes Jetson Linux 35.2.1
Linux kernel 5.10.104-tegra 5.10.107-ELinOS-5439-rt64 Modified by SSSA
Runmeter 1.0 1.0

OpenMP runtime LLVM 17.0.0 LLVM 17.0.0 Modified by BSC
Micro-ROS for Erika Internal to Erika – See D5.4 [1]
Micro-XRCE DDS eProsima XRCE-DDS – See D5.4 [1]

ROS2 Galactic Galactic
XRCE DDS Agent – –

FRED Internal, open-source – See D4.3 [2]
CUDA – 11.4

SCHED_DEADLINE.

Further details about the various components are provided in the sections that follow.

2.2 FRED porting and integration with PikeOS/ElinOS

The execution of FPGA-accelerated tasks on the Xilinx UltraScale+ target platform of the AMPERE project is
performed through the FRED framework [3], which allows the predictable execution of hardware-accelerated
tasks on FPGA-based system-on-chips platforms. The project is developed at the Real-Time Systems Laboratory
(RETIS Lab) of SSSA AMPERE partner.

The FRED architecture has been described in great detail in D4.3 [2]. Here, we list the changes that have been
committed to the software. Originally, the FRED in-kernel components have been developed as a collection of
Yocto layers, whichmade it compatible with Petalinux v2020.2-compatible kernel versions (see Section 3.2.3 of
D4.3 [2]). This was useful to engineer a bare-metal set-up on the Xilinx UltraScale+ platform. Later, to run FRED-
based applications on top of the hypervisor PikeOS (necessary for use-cases targeting the Xilinx UltraScale+
platform), these components had to be ported to be compatible with the latest version of ElinOS (7.0), its
companion Linux distribution. To do so, the Scuola and SysGo collaborated to incorporate all the necessary
components into a single project, containing:

• a PikeOS specification targeting the Xilinx UltraScale+ platform;

• an ElinOS implementation integrated with FRED support;

• FRED user-space components, like its daemon and client library.

The project is hosted at https://github.com/fred-framework/fred-elinos, where step-by-step instructions can
be found to compile and flash the framework onto a memory card, ready to be executed on the target plat-
form. The compiled Linux system includes also PREEMPT_RT support and other necessary patches like the one
described in Section 2.3.1, necessary to properly execute FRED applications in presence of real-time threads
under the SCHED_DEADLINE scheduler.

3

https://github.com/fred-framework/fred-elinos

D4.4 - Evaluation of run-times
Version 1.0

2.3 Linux kernel changes for energy-aware real-time scheduling

In this section we describe the changes applied to the Linux kernel to properly support energy-aware real-time
scheduling on Linux developed as part of the AMPERE project. While some of these changes are fundamental
to ensure the predictability of applications like those targeted by the AMPERE project, others are more general
and target different classes of systems that are related by not exactly part of AMPERE.

2.3.1 Swapping the RT and SCHED_DEADLINE scheduling classes
Many accelerator frameworks, including FRED [3], rely on a client-server architecture in which a single pro-
cess1 (either running in userspace or as a kernel worker thread) is in charge of managing acceleration requests
coming from multiple client processes executing on the same host. In this context, we must take into account
that real-time applications sending acceleration requests to the server process will block waiting for the execu-
tion of their request. The server process however might not be able to execute if its priority is not a real-time
priority, always preempted by other real-time tasks executing on the same system. To avoid cases like this, in
which a high-priority process (the client) is blocked and is subject to some form of priority inversion (other pro-
cesses execute preventing it to wake up potentially indefinitely), we must execute the server at a sufficiently
high priority. In particular, to expedite the execution of acceleration requests as much as possible, the server
process should be assigned the highest priority available in the system. This way, there can be potentially no
gaps between the instantiation of a new acceleration request and the effective start of the execution of the
accelerated task on the FPGA/GPU. In other words, the server process should behave more like an interrupt,
which is executed as soon as possible, rather than as a regular real-time process.
In regular Linux implementations, several scheduling classes are available, two of which are real-time: RT (cor-
responding to the POSIX SCHED_FIFO and SCHED_RR scheduling policies) and SCHED_DEADLINE. The latter has
the highest priority of the two, meaning that a task that is assigned to the SCHED_DEADLINE scheduling class
will always preempt a task belonging to the RT class. In EDF-based scheduling, however, priorities are dynamic
(depending on the absolute deadlines of each task), and it is not so straightforward to assign the server process
a set of SCHED_DEADLINE parameters (runtime budget, relative deadline, and period) so that it will always be
the highest priority process in the system.
To overcome this limitation, a patch has been developed for the Linux scheduler that swaps the priorities of the
two scheduling classes, SCHED_DEADLINE and RT, so that RT is the onewith the highest priority. While normally
this behavior is undesirable (tasks belonging to the RT class cannot be easily throttled like those executing
under SCHED_DEADLINE, for example, which have a specific budget), it is also themost straightforward solution
to the aforementioned problem. When running on a system compiled with this patch, the accelerator server
process can now be assigned the highest RT priority (99), and it will always be the highest priority process in
the system2, always preempting real-time tasks belonging to the SCHED_DEADLINE class on the same CPU.
With this change in place, offline optimization tools, like the one described in D3.4 [4], can treat the execution
of the server process as a high-level interference, just like other forms of interference (e.g., interrupt handlers).
The above described patch for the Linux kernel turns out to be useful also to deal with kernel threads that are
involved in the interaction of Linux applications with the GPU device, for example on the NVIDIA Jetson Xavier
AGX board. Indeed, with reference to this platform, we can observe that, by tracing an application performing
a number of calls to a GPU-offloaded function, for example using a pragma omp target device OpenMP direc-
tive, we can see that a number of kernel threads are activated several times during the interaction with the
accelerator. This will be shown in the experiment in Section 3.1.3.

1Without loss of generality, we consider only one single process as the one in charge of executing acceleration requests. In reality,
multiple processesmight be involved in a single acceleration request. As long as the sameprecautions are taken for all the processes
involved, the reasoning described here applies also for the multi-process case, even if in this section we always refer to a single
“server” process.

2As long as no other RT process is assigned the same priority.

4

D4.4 - Evaluation of run-times
Version 1.0

2.3.2 Fixing energy-aware real-time scheduling on Linux
Dynamic energy-aware real-time scheduling is out of the main scope of the AMPERE project, in which the pur-
pose of the multi-criteria optimization phase [4] is that of ensuring that real-time tasks executing on a prop-
erly statically configured system. It is nonetheless interesting to explore dynamic mechanisms that attempt to
dynamically change the system configuration (e.g., DVFS settings) and/or task placement and scheduling con-
ditions. While this is unsuitable for hard real-time scheduling of critical systems, like the industrial use cases
proposed for the AMPERE project, it might lead to better solutions for soft real-time systems, which havemore
relaxed constraints.
The Linux kernel provides dynamic energy-aware real-time scheduling by implementing the GRUB-PA algo-
rithm [5], which regulates the interaction between the SCHED_DEADLINE scheduling class and the schedutil

CPUFreq governor (when selected).
schedutil attempts to impose some restrictions on the frequency selection depending on the information pro-
vided by SCHED_DEADLINE. In particular, to avoid breaking the guarantees provided by SCHED_DEADLINE to
its tasks, schedutil tries to select the next frequency for a CPU such that the CPU capacity does not drop below
the “running bandwidth” [5] advertised by SCHED_DEADLINE for each CPU. In other words, schedutil selects
the minimum CPU frequency capable of scheduling the set of SCHED_DEADLINE tasks on each CPU.
While these mechanisms seem relatively safe, they can be broken almost trivially by an unsuspecting user.
Global EDF (G-EDF), as implemented in SCHED_DEADLINE, cannot provide any bounded tardiness guarantee to
userspace onmulti-core systemswhere CPU frequencies are free to change over time [6, 7] (either due to DVFS
or to some other mechanism like thermal throttling): tasks scheduled under G-EDF can potentially migrate at
any activation, which leads to the running bandwidth of each CPU fluctuating a lot over time; GRUB-PA will
attempt to select safe frequencies to run at, but since this value is tied to the running bandwidth of the CPU, it
will be subject to fluctuations as well. Generally, a global utilization admission test (such as the one currently
implemented by SCHED_DEADLINE) does not work when each CPU capacity can change over time (due to the
changing frequency) and tasks are scheduled using G-EDF.
Finally, the maximum capacity of a CPU in Linux is defined as the capacity of the CPU when running at the
maximum frequency. Unfortunately, on many platforms, the frequencies advertised as the maximum typically
lead to thermal issues. The issue is prominently present on embedded andmobile devices, which often cannot
afford active cooling. The unsustainability of these frequencies for relatively long periods is a significant issue
for the admission of tasks to SCHED_DEADLINE, because tasks may be admitted even though it is virtually
impossible to schedule them or even provide other guarantees, like “bounded tardiness” [8], due to thermal
throttling. This behavior can be easily reproduced by attempting to execute any task with utilization close to
the maximum capacity of a CPU, if the execution time of the task is carefully calibrated.
To address these issues, SSSA has developed a set of patches to the Linux kernel concerning the
SCHED_DEADLINE scheduling class and the schedutil frequency governor.

2.3.2.1 Thermal-safe scheduling of real-time tasks

This patch set addresses the issue of scheduling real-time tasks under potential thermal throttling conditions.
It assumes that the user of the system has some knowledge (either by design or by empirical evidence) about
which DVFS settings available on the target system are “thermal-safe” and which are not.
The changes applied by this patch involve both SCHED_DEADLINE and the schedutil frequency governor. In
the modified Linux implementation, the capacity of each CPU core (accounted by both SCHED_DEADLINE and
schedutil) is tied with the maximum scaling frequency selected by the user for each CPU. If the user selects a
“thermal-safe” frequency as the maximum one, then real-time tasks cannot be affected by thermal throttling-
related issues anymore. Implementing this mechanism requires to change the frequency selectionmechanism
in schedutil (so that the correct capacity is accounted for each CPU) and in SCHED_DEADLINE (to adjust the
consumed runtime of each task accordingly).

5

D4.4 - Evaluation of run-times
Version 1.0

2.3.2.2 Adaptively Parititioned EDF scheduler for SCHED_DEADLINE

This patch set changes the scheduling policy implemented by SCHED_DEADLINE from G-EDF to another policy,
called Adaptively Partitioned EDF (APEDF) [9, 10], with no change on the user-space API. This strategy has been
devised as amiddle ground between G-EDF and Partitioned EDF (P-EDF), in an attempt of retaining the positive
aspects of both G- and P-EDF without their respective negative aspects.

The core idea behind APEDF is that if a taskset is partitionable, the scheduler will automatically partition its
tasks to the available cores, realizing automatically what is effectively a P-EDF policy, for which not only a
tardiness bound, but also precise deadline guarantees, can be provided. For non-partitionable task sets, a
fall-back mechanism to G-EDF is provided. Leveraging this strategy, the number of task migrations is reduced
drastically (if possible) compared to G-EDF, significantly improving the DVFS effectiveness of the scheduler
when used in combination with the schedutil frequency governor (see Section 3.2).

To implement APEDF, SCHED_DEADLINE must be modified to push away tasks only if they do not fit on the
core in which they wake up and to disable all pull mechanisms. When pushing a task away, it will be moved to
a different CPU where it fits; otherwise, we will fall back to the regular G-EDF push mechanism if no such CPU
can be found. APEDF can support different partitioning strategies, similar to P-EDF. Examples include First-Fit
(FF) or Worst-Fit (WF). If FF is used, there is a sufficient global utilization bound that can establish whether a
taskset is partitionable and, conversely, schedulable. This bound can be used for hard real-time tasks during
admission control to provide the guarantee that no deadline will be missed.

2.4 Run-time mechanisms for resilience

AMPERE defines two software mechanisms to achieve resilience: (1) task-level parallel replication through
OpenMP (based on the definition of SIL/ASIL levels in the models), and (2) dynamic monitoring through fine-
grained proactive orchestration. These mechanisms are summarized in deliverable D4.3 [2] and further de-
tailed in D3.3 [11]. Furthermore, all resilience features are included in demonstrator D2.3 [12].

A preliminary evaluation of the two resiliencymechanisms, in terms of performance, accuracy and programma-
bility, was presented in D3.3. In this case, the techniques are evaluated on top of an implementation provided
by the University of Siena (UNISI) of the tracking sub-system of the ODAS use case. This evaluation concluded
that:

1. Regarding performance, the observer mechanism introduces minimal overhead, hence it is the suitable
solution when performance is the main goal. Yet, replication shows good scalability when the system
offers available resources, reducing the effects of the overhead.

2. Regarding accuracy, the combination of the twomechanisms offers the best results, reaching more than
90% in many scenarios. In isolation, dynamic monitoring is better for detecting silent faults, while repli-
cation shows better results for detecting erroneous results.

3. Regarding programmability, OpenMP is clearly the simplest solution, requiring very little effort and
knowledge from the programmer. Dynamic monitoring shows acceptable levels of programmability by
decoupling the implementation of the application from the observation.

The final evaluation of the resilience approach in AMPERE is presented in deliverable D3.4 [4]. In this case, only
the replication mechanism is tested because the code generated from the models is synthetic, i.e., functions
contain only artificial code that resembles the load produced by the real implementation. Consequently, there
are no real variables to track, and this has two main consequences while evaluating resilience: (1) the dynamic
monitoring mechanism cannot be applied, and (2) accuracy cannot be evaluated. Hence, D3.4 [4] presents an
evaluation of resilience on top of the PCC and ODAS use cases in terms of performance and scalability.

6

D4.4 - Evaluation of run-times
Version 1.0

2.5 Run-time energy monitoring
This chapter describes the updates to the run-time energy monitoring support implemented as part of the
AMPERE ecosystem, alongwith its evaluation carried out formilestoneMS4. The deliverable D3.3 [11] describes
the power and energymodels adopted for themulti-criteria offline optimization strategies. DeliverableD3.4 [4]
complements it with the related model updates for milestone MS4.
In the following, we report the related updates to the Runmeter online energy monitoring framework pro-
posed in deliverable D4.3 [2]. Starting from the platform’s power models [11, 4], such a framework provides
accurate and responsive energy estimates at different level of granularity during the application runtime. The
monitoring framework has a negligible impact on system’s performance, and the estimates can be used for
monitoring purposes, as well as actuation drivers (e.g., for DVFS, or energy-aware task scheduling). We also
summarize the evaluation of the monitoring framework, which was already carried out for the NVIDIA Jetson
AGX Xavier target platform [13, 14] as part of deliverable D4.3 [2].

2.5.1 Updates to the energy model
At the core of Runmeter there are the power models devised as part of deliverable D3.3 [11]. During the multi-
criteria integration phase, minor incompatibilities appeared between the performance monitoring counters
(PMCs) required for such models and some profiling tools in the AMPERE ecosystem. In particular, this issue
affected the power model for the NVIDIA Jetson AGX Xavier’s CPU. To solve it, we updated the CPU power
model as reported in D3.4 [4] and repeated the model training step.
For consistency between the offline multi-criteria optimization, performed as part of WP3, and the power
models driving WP4’s energy estimates, we also updates the power models in Runmeter. As in D3.4 [4], such
an update does not affect in any visible way the accuracy of CPU energy consumption estimation.

2.5.2 Evaluation of the energy monitoring framework
The evaluation of the energy monitoring framework is part of MS4. However, as the framework was already
available, we already performed such analysis as part of deliverable D4.3 (Section 4.2) [2]. In the following, we
summarize the main results for energy monitoring accuracy and framework overhead for the Xavier board.

2.5.2.1 Energy estimation accuracy

Our energy monitoring framework, Runmeter, runs as part of the Xavier’s Linux kernel. Floating-point oper-
ation are not allowed in the kernel, and would anyway impact the system’s performance in a non-negligible
way. For this reason, we converted our power models [11] to a 64-bit fixed-point data type with 29 bits for the
fractional part.
As reported in D4.3 [2], our evaluation shows that the conversion to a fixed-point model causes a maximum
absolute error of about 17 mW for the approximation, corresponding to a relative error of belo 0.8%.
As far as power estimation accuracy is concerned, with the fixed-point-based power model, we report a max-
imum absolute percentage error (APE) of 29% over all collected samples, with an average APE of around 9%,
when compared to the analog power sensor of the board.

2.5.2.2 Monitoring overhead

Runmeter impacts the system’s activity with overhead due to PMCs collection and manipulation for statistics
and model estimation. As reported in D4.3 [2], the overhead for such activities in worst-case condition of
extreme context switching accounts for a maximum of 0.7%, being generally much lower for typical scenarios.

7

D4.4 - Evaluation of run-times
Version 1.0

For example, the overall runtime of Runmeter for idle contitions at 2.266GHz is less than 0.4ms per unit of
time, accounting for 0.04%of overhead for each CPU. The cost for the framework invocation is hence negligible
in most of the cases, and complies with the KPI3.2, requiring minimal overhead for run-timemonitoring (<1 %).

2.5.3 Support for other platforms

2.5.3.1 GPU and FPGA support

While demonstrated for the CPU power model, our methodology can be extended to GPU and FPGA support
to fully address the heterogeneity of the target platform. However, the integration of such additional models
in the Linux kernel introduces additional challenges due to their counters not being directly accessible from
within the CPU domain. As a practical example, the Xavier’s GPU PMCs are only accessible through NVIDIA’s
proprietary CUPTI API [15], which is not available at the Linux kernel level. Indirect approaches would then
be required, which would introduce a performance overhead higher to the 1% threshold required by KPI3.2.
For this reasons, analyzed more in dept in deliverable D4.3 [2], we propose a model which takes into account
a simplified model for any additional accelerator, trading model accuracy for lower complexity and increased
performance.

P = L+

#cores∑
i=1

(
gi ·Gi +

#PMCs∑
j=i

xij ·Aij

)
+ xGPU ·AGPU + xFPGA ·AFPGA

The independent parameters xaccelerator represent the activity of a given accelerator with a simplified linear
model. Such parameter can be a PMC directly selected from the counters locally available to the CPU that
expose some degree of correlation with accelerator’s activity. As in the case of the FPGA, xaccelerator can
also be a metric summarizing the accelerator’s activity directly computed by its internals and exposed to the
CPU.

8

D4.4 - Evaluation of run-times
Version 1.0

3 Evaluation of predictability of real-time tasks
This section describes the various experiments that were carried out to validate the AMPERE runtime effective-
ness in ensuring predictability of the hosted applications. The effectiveness of the multi-criteria optimization
strategy for the platforms developed in WP3, is convalidated applying the methodology to randomly gener-
ated synthetic workload scenarios, deployed on the FPGA-accelerated Xilinx UltraScale+ board. Finally, Sec-
tion 3.3.1.1 shows how the secondary optimization goal of slack maximization can be conveniently leveraged to
obtain more robust configurations.

3.1 Implementing Multi-DAG Real-Time Application Scenarios on
Linux

For the purpose of evaluating the results produced by the optimization tool described in D3.4 [4], SSSA de-
veloped an application that emulates the behavior of a real application comprising one or multiple real-time
DAGs running on Linux. This application, which we will refer to as RTDAG [16], reads the system configura-
tion provided by the MIQCP solver developed by SSSA and starts several parallel threads of execution, each
corresponding to one of the tasks in the original DAG specification.
In RTDAG, the source task of each DAG is activated periodically while the others execute according to the same
three steps described in the previous section. In this case, the implementation of each task performs a series
of operations on a set of matrices, a representative workload of a typical real-time image processing pipeline.
The operations performed by each task are carefully calibrated offline to result in the expected execution times
when running on the most powerful (big) core at the highest available frequency. For more information on the
calibration of task execution times, see Section 3.1.1. Thanks to the accurate time scaling model described in
D3.4 [4], if the tasks execute for the correct amount in that system configuration we expect them to behave
according to that model when run at lower frequencies or on less powerful cores.
Each task executed by RTDAG limits operations on shared memory only at the beginning/end of its activation
and performs mostly CPU-intensive operations in between. Each task that is not the DAG originator takes as
input a set of matrices and produces another set of matrices as output for its successors. The synchronization
operations between predecessors/successors in each DAG are implemented using condition variables. Only
when all the predecessors of a task have completed their execution, the task is notified, thus it is unblocked
and can proceed forward for its own computations.
The condition variables described above are definedper-task, in the sense that there is one for each task in each
DAG. When one of the tasks is about to terminate, it iterates through its successors to check whether it is the
last of that task predecessors to complete execution, and if so it signals the task using its associated condition
variable. This implementation is necessary to avoid spurious wakeups of tasks in DAGs, meaning wakeups that
may lead a task to block again after checking that not all its predecessors have completed execution. These spu-
rious wakeups are to be avoided at all costs when implementing real-time tasks under the SCHED_DEADLINE
scheduler. If a task like this were to wake up before it can actually start execution, the scheduler would assign
it the wrong absolute deadline for sure, or at least one that does not match the expectation of our solvers.
Thanks to this single-wakeup approach, we eliminate that possibility, resulting in SCHED_DEADLINE always
assigning the correct absolute deadlines to DAG tasks.

3.1.1 Calibrating real-time tasks execution time

As mentioned in the previous section, the implementation of a real-time task provided by RTDAG is synthetic
and as such it does not perform any meaningful manipulation of the data received in input by each task. In

9

D4.4 - Evaluation of run-times
Version 1.0

reality, each task executing on the CPU1 performs a static set of algebraic operations involving floating-point
matrices, which we consider a “tick”. This tick is considered the minimum amount of execution that a task can
run for. For longer execution times, we can repeat the execution of a tick multiple times, approximating any
execution time with an integer number of ticks. Selecting a very limited number of matrix operations as part
of a tick is fundamental, so that the granularity of the execution times emulated by the synthetic tasks does
not pose a concern.

Given a task set specification, RTDAG assigns to each synthetic task a number of ticks to run depending on its
declaredWCET. Since theWCET declared in each DAG specification is specified as the expected execution time
of the task when executing on themost powerful (big) core at the highest frequency, wemeasured the average
execution time ttick needed by a tick in those conditions, then calculated the number of ticks a task τi has to
run for, in order to exhibit a target execution time of Ci, as equal to⌊

Ci

ttick

⌋
This considers that Cns

i = 0 for our synthetic workload, as in the basic tick computations we used matrices
of limited size. Since the number of ticks assigned to each task is computed statically, independently of the
frequency or CPU type on which the task will be deployed, the amount of work that a task will do at each
activation is always the same, emulating the behavior of a real non-synthetic application.

RTDAGprovides the option to precisely calibrate the value of ttick whendeployed on a newplatform, by repeat-
edly executing the workload of a single tick and outputting a number of statistics on the measured execution
times.

However, any estimate on the execution time of a real-time task (synthetic or not) running on Linux under
SCHED_DEADLINE can be influenced by several factors, including: interfering activities generally known as “OS
noise” [17], e.g., due to the execution of IRQs or non-preemptibility sections of the kernel [18]; other tasks that
may be scheduled by a scheduler that has a higher priority than SCHED_DEADLINE2; cache-level interference
due to other tasks (even lower-priority ones), running on the same or different cores causing an unforeseen
volume of evicted L2/LLC CPU cache lines3. All of these factors may impact the execution times of tasks, that
might sporadically happen to be longer than experienced in previous profiling campaigns.

In general, high-level models for task WCET should consider all of these factors when specifying a value, so
that the indicated WCET is effectively what its name suggests, the worst-case, and no task may ever exceed it,
no matter the situation. In our case, the WCET is specified by the DAG generation tool, so we have to reason
in the opposite direction when selecting the number of ticks of execution for each task. If we used the simple
formula indicated above using the average measured time ttick, then a synthetic task within RTDAG would
result in having its average execution time approximately equal to the specified Ci value, i.e., roughly half
of the times we would expect the task to have a longer duration. Thus, to let Ci represent an upper-bound
to a task execution time, including the possible sources of interference mentioned above, RTDAG applies a
correction factorR in the formula for computing the target execution time:

R ·
⌊

Ci

ttick

⌋
where we verified experimentally that setting R = 0.95 was sufficient to avoid actual executions longer than
the intended Ci values, at any frequency or core type for the desired platform.

1For tasks executing on an accelerator, no calibration was necessary, as they perform a fixed amount of work dictated by the imple-
mentation of the accelerated task. See the section Section 3.1.2 for more details.

2Typically SCHED_DEADLINE is the scheduler with the highest priority among the Linux schedulers, which means that no task sched-
uler by a different scheduler than SCHED_DEADLINE can ever preempt a task running under SCHED_DEADLINE. However, this
behavior can be easily changed via a simple patch to the Linux kernel, as shown in Section 2.3.1.

3Cache-colouring techniques may be conveniently leveraged to mitigate these issues.

10

D4.4 - Evaluation of run-times
Version 1.0

3.1.2 Accelerated tasks implementation
RTDAG provides also support for hardware-accelerated tasks. These tasks are implemented similarly to their
pure-software counterparts, in that they each wait for the termination of all their predecessors before waking
up, starting a computation intensive section, and signaling all their successors for completion. There are two
key differences in how they are implemented with respect to the other tasks: first, they implement the com-
putation intensive part by performing an accelerated call via an accelerator framework; second, they run at a
priority higher than the one of other SCHED_DEADLINE tasks. Asmentioned in Section 2.3.1, this change is nec-
essary, regardless of the kind of task accelerator framework used, to ensure the validity of the configurations
provided by the optimizer. Since many of these accelerator frameworks employ a client-server architecture,
in which a server process manages a queue of acceleration requests from several other tasks, it is imperative
that these processes execute at a higher priority than any other task started by RTDAG, in order for them to
be treated as interference in the optimization tool. We used this approach also for the software part of the
hardware-accelerated tasks part of RTDAG; this way, whenever a pure software task wakes up the thread that’s
supposed to be hardware-accelerated, there is the smallest delay possible between the request of starting a
hardware-accelerated task and the actual request to the acceleration daemon process to run the requested
task on the FPGA/GPU.
Since tasks scheduled using SCHED_DEADLINE may be preempted whenever the acceleration daemon is se-
lected for execution, effectively the daemon can be considered an interrupt which may fire and interfere with
SCHED_DEADLINE tasks. For this reason, it can be addressed in the same way we address IRQ interference
in the optimizer. In general, for each platform this interference can be measured using some targeted exper-
iments. It should be noted that any long software tasks may be subject to this kind of interference multiple
times, if multiple hardware tasks are activated during its execution and the daemon executes on the same
core. This kind of interference can of course be eliminated if the daemon is statically bound to a core that
is never used by any software task for execution. If deemed necessary, the optimization framework may be
configured to reserve a core for this and/or other activities on the system, albeit this would adversely impact
the optimality of the found solutions.
RTDAG provides support for different kinds of accelerators implementing accelerated tasks using the following
frameworks:

• tasks that should be executed on FPGA are implemented leveraging the FRED FPGA acceleration frame-
work [3], described in D4.3 [2]. Leveraging this framework, one or multiple tasks in each scenario can be
indicated to be always accelerated on FPGA, dynamically reconfiguring the hardware platform if neces-
sary.

• Tasks that can be executed on the GPU leverage OpenMP to compile a set of operations that should be
offloaded as a kernel on the GPU.

In general, RTDAG tasks execute repeatedmatrix multiplication operations to emulate the behavior of a typical
real-time application. The size of the matrices to multiply can be chosen arbitrarily by the user, as well as the
number of operations each task will perform on its private data. As mentioned in Section 3.1, RTDAG Regarding
OpenMP-accelerable tasks, RTDAG users can choose whether a task will be executed on the CPU (sequentially)
or the GPU, which is parallelized through OpenMP. An evaluation of the benefits of offloading this kind of
operation to the GPU through OpenMP is included in D2.5 [19].

3.1.3 Jetson Xavier AGX
In this subsection, we perform an experiment highlighting the usefulness of the above mentioned kernel
patch swapping the RT and SCHED_DEADLINE scheduling classes for our use-cases. Indeed, when perform-
ing offloading to a GPU device on the NVIDIA Jetson Xavier AGX board, our reference GPU-accelerated plat-
form, we can see that a number of additional device driver threads are involved in the interaction with
the GPU device. This can be shown with an experiment in which we trace using perf a simple applica-

11

D4.4 - Evaluation of run-times
Version 1.0

tion performing a number of calls to a GPU-offloaded function. Precisely, tracing a simple offloaded matrix
multiplication, we can find: nvmap-bz, irq/203-gk20a_s, irq/56-host_syn, cuda-EvtHandlr, nvgpu_clk_arb_p,

nvgpu_pg_init_g, nvgpu_channel_p, nvgpu_nvs_gv11b.
Repeating the experiment with a variable number of calls to the offloaded function, we can also isolate which
ones, among these, are responsible for performing an offloaded call, once the GPU device is already initial-
ized and the GPU kernel to be executed does not need to be changed. As Figure 2 shows, it is clear that the
irq/56-host_syn is involved at every offloaded function invocation.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f w
ak

e-
up

 e
ve

nt
s

Number of invocations to GPU function

hellogauss-gpu
irq/56-host_syn

nvmap-bz
irq/203-gk20a_s

rcu_preempt
kworker/0:0H

cuda-EvtHandlr
kworker/u16:1

nvgpu_clk_arb_p
nvgpu_pg_init_g

nvgpu_nvs_gv11b
nvgpu_channel_p

Figure 2: Number of occurrences of wake-up events (Y axis) for a number of kernel threads and processes
(different curves), at varying numbers of invocations (X axis) of a GPU-offloaded matrix multiplication.

These kernel threads are activated several times but for a very short time, and their execution runs concurrently
with our main application threads (which are executing regular CPU workloads, as the thread calling the GPU-
accelerated function is temporarily suspended waiting for the result), thus they can interfere with any of the
threads deployed on the platform. Therefore, these kernel threads interfere with our main workload similarly
to how a device driver interferes with user-space applications.
In our methodology, we decided to consider the interference due to these kernel threads by inflating slightly
the WCETs of regular CPU runnables, so that we increase slightly the robustness of the platform configura-
tion to possibly unmodelled effects. However, to let these threads execute correctly, we need to give them a
real-time priority, and configure the real-time scheduling class above the SCHED_DEADLINE one, so that our
main application workload, deployed using SCHED_DEADLINE, is preempted by these kernel threads, and GPU
acceleration can be performed on-time, as expected. This is achieved using the kernel patch described above.
The just described scenario is similar to how we dealt with the interferences due to the FRED server and FPGA
reconfiguration kernel thread on the Xilinx board, where a similar configuration allowed us to consider these
very small interruptions by just a small inflation of WCETs.

3.2 Evaluating APEDF performance

To evaluate the effectiveness of the patches described in Section 2.3.2, we performed several experiments on
an ODROID-XU4 platform. On this platform, each CPU island is characterized by 4 CPUs sharing a single DVFS
setting (meaning all CPUs on the same island must execute at the same frequency). For these experimenta-
tions, only the “big” cores have been used, turning off the “LITTLE” island; so for our purposes, the target
platform is effectively a 4-core platform characterized by a single shared frequency among them. For these
experiments, the frequency of 1.3 GHz has been selected as maximum frequency, to avoid thermal-throttling

12

D4.4 - Evaluation of run-times
Version 1.0

Global-EDF with schedutil

April 18, 2023OSPM Summit, 2023

1

Average CPU
Frequency

Deadline Miss Ratio(a) G-EDF

AP-EDF First-Fit with schedutil

April 18, 2023OSPM Summit, 2023

2

Single frequency island means few
chances to lower the frequency

Theoretical schedulability
bound around 𝑈 = 2.5

(b) APEDF FF

AP-EDF Worst-Fit with schedutil

April 18, 2023OSPM Summit, 2023

3

Way better for single-
frequency multi-CPU islands!Uses lower frequencies, but no theoretical guarantee

(c) APEDF WF

Figure 3: Comparison between different scheduler implementations for SCHED_DEADLINE in terms of
deadline miss ratios.Average miss ratio

April 18, 2023OSPM Summit, 2023

4

LOG
SCALE!

Putting all the tasksets
together

(a)

Average miss ratio

April 18, 2023OSPM Summit, 2023

4

LOG
SCALE!

Putting all the tasksets
together

(b)

Figure 4: Average deadline miss ratio for each SCHED_DEADLINE implementation. Plots refer to the same
data, the only change being the Y axis (linear on the left plot and logarithmic on the right one).Task migrations

April 18, 2023OSPM Summit, 2023

5

G-EDF AP-EDF First Fit AP-EDF Worst Fit

Again, theoretical cut off around 𝑈 = 2.5

(a) G-EDF

Task migrations

April 18, 2023OSPM Summit, 2023

5

G-EDF AP-EDF First Fit AP-EDF Worst Fit

Again, theoretical cut off around 𝑈 = 2.5

(b) APEDF FF

Task migrations

April 18, 2023OSPM Summit, 2023

5

G-EDF AP-EDF First Fit AP-EDF Worst Fit

Again, theoretical cut off around 𝑈 = 2.5

(c) APEDF WF

Figure 5: Comparison between different scheduler implementations for SCHED_DEADLINE in terms of task
migrations.

issues as described in Section 2.3.2.1.

Figure 3 compares the performance of an unpatched SCHED_DEADLINE implementation (i.e., using G-EDF as
scheduling policy) against the APEDF implementation described in Section 2.3.2.2, either using First-Fit (FF)
or Worst-Fit (WF) as task partitioning strategies. With each scheduler implementation, we executed several
tasksets with increasing total utilization, from 1.0 up to 3.6, since the platform has 4 cores. In all experiments,
the selected frequency governor is schedutil, with its default rate limit. In general, APEDF consistently out-

13

D4.4 - Evaluation of run-times
Version 1.0

Global-EDF with schedutil

April 18, 2023OSPM Summit, 2023

1

Average CPU
Frequency

Deadline Miss Ratio (a) G-EDF

AP-EDF First-Fit with schedutil

April 18, 2023OSPM Summit, 2023

2

Single frequency island means few
chances to lower the frequency

Theoretical schedulability
bound around 𝑈 = 2.5

(b) APEDF FF

AP-EDF Worst-Fit with schedutil

April 18, 2023OSPM Summit, 2023

3

Way better for single-
frequency multi-CPU islands!Uses lower frequencies, but no theoretical guarantee

(c) APEDF WF

Figure 6: Comparison between different scheduler implementations for SCHED_DEADLINE in terms of
average frequency selection.

performs G-EDF, using either partitioning strategy, both regarding the number of deadline misses (see also
Figure 4) and the number of task migrations (see Figure 5). In particular, with FF, we can see virtually no
missed deadline up to the global utilization bound we expect from theory (~2.5); for the same tasksets, G-EDF
tends to show misses even for very low system utilization.
Regarding DVFS performance, APEDF using FF, on average, selects higher frequencies (using schedutil), as
shown in Figure 6 since it tends to pack all the tasks on the first core, and the tested platform has only one
shared frequency island. For this kind of platform, WF selects, on average, lower frequencies than the other
two strategies while retaining fewer deadline misses compared to G-EDF. This result is mainly due to the lower
number of task migrations that characterizes APEDF, regardless of the partitioning strategy (see Figure 5).

3.3 Experimental Evaluation on Linux

All our experimental evaluations using RTDAG follow the same methodology, regardless of the target platform
used for the evaluation. Starting froma representative set of task sets, composed of one ormultiple concurrent
DAGs, we run them through the optimization tool, which finds suitable runtime conditions to execute the task
set (CPU/accelerators frequencies, task mapping, individual task deadlines, etc.).
For each task set, we execute on RTDAG on the target platform. If necessary, RTDAG will set on startup the
frequency of each processing unit to reflect the one selected by the optimization tool. Once the platform is
configured accordingly, it will start all the real-time tasks corresponding to each task in the task set. Each task
is assigned the correct SCHED_DEADLINE parameters, as indicated by the optimizer. For each task set, several
iterations of each DAG are executed one after the other, either for a set amount of time or until the hyper-
period of all the DAGs part of the task set is reached. After RTDAG terminates, statistics related to end-to-end
response times of each DAG are collected.
These operations havebeenperformedonmultiple target platforms, somewhich are the same target platforms
of the project and some others which are used for further validation.

3.3.1 Evaluation on a ODROID-XU4 Platform

The ODROID-XU4 is a platform comprising on two DVFS-caplable ARMv7 CPU islands in big.LITTLE configura-
tion. On this platform, we selected a set of about 200 task sets comprising one or multiple DAGs. Using the
optimization tool described in D3.4 [4], we provided RTDAG with the correct configuration to execute each
task set on the ODROID-XU4 board under SCHED_DEADLINE.
In order to validate also the expected average power consumption as indicated by the optimization tool, before
starting each task set a monitoring application is executed on a secondary machine. This application monitors

14

D4.4 - Evaluation of run-times
Version 1.0

the power consumed by the ODROID-XU4 board using an external power monitor connected to its power
supply.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

M
ax

 R
es

po
ns

e
Ti

m
e

/ D
AG

 D
ea

dl
in

e

Average Power (W)

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

Av
g

Re
sp

on
se

 T
im

e
/ D

AG
 D

ea
dl

in
e

Average Power (W)

Deadline
MIQCP

Figure 7: Maximum (left) and average(right) relative response times (Y axis) vs average power consumption (X
axis).

 0.1

 1

 10

 100

0.
2

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

LITTLE Frequency (GHz)

(%)

 0.1

 1

 10

 100

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

Big Frequency (GHz)

MIQCP

(%)

Figure 8: Chosen frequencies for the two islands

In Figure 7, we report the relative DAG response times (end-to-end response-time of each DAG divided by its
deadline, on the Y axis) versus the measured power consumption (on the X axis), for the scenarios we ran. The
left and right plots report the maximum and average relative response times, respectively, on the Y axis. Since
the optimization objective in this case is that of minimizing the average power consumption of each task set,
each CPU island is kept at a relatively low-power frequency setting. A visualization of the frequency selection
performed by the optimizer is provided in Figure 8, which represents the number of times a certain frequency
is selected by the optimizer using histograms for each island. From the plot it is clear that the optimizer makes
very little use of the higher frequencies available on each CPU island.

This preference for low operating frequencies unavoidably results in each DAG having relatively long response
times, close to the DAG end-to-end deadlines (the dashed line at 1.0 on the Y axis in Figure 7). In just 3 of the
200 scenarios we ran we observed deadline misses, which were not expected according to the optimization
tool. The optimizer however has a certain tolerance that cannot be taken into account when moving on to the
target platform. To address this issue, the secondary optimization goal of minimum slack maximization can be
conveniently leveraged to obtain more robust configurations.

15

D4.4 - Evaluation of run-times
Version 1.0

3.3.1.1 Maximizing robustness under power budget constraints

To evaluate the robustness improvement provided by the secondary optimization goal, we re-optimized 19 out
of the 200 scenarios considered in our evaluation above. The selected scenarios are the ones characterized by
the smaller slack found by the first optimization goal, including the 3 scenarios that exhibited sporadic deadline
misses when executed on the ODROID-XU4 board. These scenarios were re-optimized, this time indicating to
the optimizer to maximize each DAG slack. To avoid losing the benefits of the first optimization, the minimum
average power consumption found for each task set has been provided to the optimizer as a power budget
constraint, which cannot be exceeded. For each of these task sets, the optimizer found solutionswith (typically)
better response times, without exceeding the provided power budget. Figure 9 reports the minimum and
maximum values (vertical segments) of themaximum relative slack obtained in repeated runs of each scenario
on theODROID-XU4 platform. In the plot, the red segments indicate scenarios optimized only for theminimum
power, while the green ones are optimized both for power and slack. Visually, it is evident that the scenarios
optimized also for slack resulted in a general lower (or sometimes equal) statistics of the obtained relative
slack. Additionally, the few scenarios that originally missed their deadlines under power-only optimization,
turned out to stay safely below the deadline limit, in the re-optimized configuration maximizing slack (at an
equal average power consumption).

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Deadline
Power

Power+Slack

Figure 9: Maximum response times relative to DAG periods (Y axis) for various DAGs (X axis), with and
without slack optimization (green and red lines, respectively), in addition to power optimization.

3.3.2 Evaluation on the Xilinx UltraScale+ Platform

The Xilinx UltraScale+ ZCU102 board, one of the target platforms of the AMPERE project, provides access to
its programmable logic subsystem to execute FPGA-based tasks. Access to this functionality is obtained by
leveraging the FRED framework. In addition, for the purposes of the AMPERE project this platform is to be
used by executing a Linux guest on top of PikeOS hypervisor.
To validate the expected behavior of real-time tasks executing on Linux on this platform, we performed experi-
ments running several optimized task sets using RTDAG. To evaluate the impact that different componentsmay
have on the predictability of real-time workloads executed with RTDAG, our experimentation can be divided
into 4 different sets of experiments:

1. scenarios with no FPGA-accelerated tasks executing on Linux “bare-metal” (i.e., with no PikeOS);
2. scenarios with FPGA-accelerated tasks executing on Linux “bare-metal”;
3. scenarios with no FPGA-accelerated tasks executing on Linux on top of PikeOS;
4. scenarios with FPGA-accelerated tasks executing on Linux on top of PikeOS.

16

D4.4 - Evaluation of run-times
Version 1.0

An evaluation of the impact of PikeOS on individual real-time tasks executing either on the CPU or FPGA-
accelerated using FRED can be found in D5.4 [1]. The purpose of these evaluations is to assess the impact of
virtualization on more complex scenarios in which several real-time tasks are involved.
For all these tests, the calibration of the execution time of software tasks has been carried out once without
PikeOS, so that the same amount of work is performed in corresponding scenarios. For simplicity we tested
these scenarios always selecting the maximum available frequency for both the CPU and the FPGA.

3.3.2.1 DAGs with no FPGA-accelerated tasks

In these first scenarios, we generated several software-only tasksets and optimized them for execution on
the Xilinx UltraScale+ board at the maximum frequency. We then executed them using RTDAG multiple times
to test how much PikeOS impacts their performance. Overall, we measured an increase of the end-to-end
DAG response times of about 2%, which is slightly higher than the overhead that we evaluated for single-task
applications in D5.4 [1].

3.3.2.2 DAGs with FPGA-accelerated tasks

For tests involving at least one FPGA-accelerated task, we generated somemore task sets and optimized them
for the minimum average power consumption once executed on the UltraScale+ platform. We then executed
them, just like the previous sets, both with and without PikeOS mediation.
In this case, the FRED daemon application is started and executed at a higher priority than RTDAG software
tasks, as indicated in Section 3.1.2. The hardware IPs used as hardware tasks are the same described in D5.4 [1],
for which we already know the overhead introduced by PikeOS, both in terms of reconfiguration cost and in
terms of regular execution time. In all the scenarios that we optimized, the solver chose to avoid leveraging the
reconfiguration capabilities of the FRED framework and accelerate only one among the tasks with a possible
hardware implementation.

Table 2: Behavior of real-time tasks with one FPGA-accelerated task executing on the Xilinx UltraScale+ platform when
executing with or without the mediation of the PikeOS hypervisor.

Taskset DAG Period [ms]
Average Response Times [ms]

Without PikeOS With PikeOS

1 120 103.158 MISS
2 100 76.101 77.017
3 120 103.125 104.785
4 90 76.015 77.623
5 120 103.045 106.759

Table 2 shows a subset of the scenarios that we tested. For each scenario in the table, we show measured av-
erage DAG end-to-end response times, comparing values measured when executing the same scenario either
with or without PikeOS. In this case, the measured overhead is a mix of the contributions of the overheads in-
curred when executing FPGA-accelerated calls in D5.4 [1] and the overhead measured above for software-only
multi-task scenarios. In this case, applications can be optimized for robustness, as described in Section 3.3.1.1,
to tolerate as much overhead as possible. However, that might not be sufficient. For example, see scenario 1
in Table 2, where the resulting DAG systematically misses its end-to-end deadline (equal to the DAG period),
even after re-optimizing the scenario for robustness sake.
To address this issue, the overhead introduced by PikeOS on individual tasks, either software or hardware-
accelerated (as described in D5.4 [1]) should be taken into account by the optimization tool. This can be done

17

D4.4 - Evaluation of run-times
Version 1.0

by “inflating” expected tasksWCETs before supplying them to the optimizer. We repeated this step, optimizing
scenario 1 both for power and for robustness using the “inflated” execution times and with the optimizer
signaled that indeed the original solution that it provided was not feasible under the original conditions. It
instead found a different solution, which we verified this time to be feasible by repeating the experiment on
the target platform.

3.3.3 Evaluation of the PCC Use-Case
This section evaluates the performance of the PCC use-case when deployed on the two target platforms of the
AMPERE project. The tasks to execute are emulated via RTDAG (see Section 3.1) and depending on the selected
platform they can be offloaded to the GPU via OpenMP or to the FPGA accelerator via FRED.

3.3.3.1 Evaluation on the Xavier AGX Platform

Optimization Objective DAG
Response Time [ms]

Deadline [ms]
Minimum Average Maximum

Minimum Power 0 0.138 0.156 0.791 5
Minimum Power 1 2.725 2.856 4.863 5
Minimum Power 2 25.770 26.161 30.213 33
Maximum Robustness 0 0.140 0.162 0.460 5
Maximum Robustness 1 2.719 2.816 4.885 5
Maximum Robustness 2 22.315 22.752 25.723 33

Table 3: Response times measured on the NVIDIA AGX Xavier platform for the PCC use case, depending on the
optimization objective.

(a) Minimum average power (b) Maximum robustness

Figure 10: Execution of the PCC use case with RTDAG on the NVIDIA AGX Xavier platform, depending on the
optimization objective.

The output configuration provided for the PCC Use Case in D3.4 [4] has been executed on the Xavier AGX
target platform, emulating each task using RTDAG and deploying accelerated tasks on the GPU using OpenMP
pragmas. Extensive experimentation has been performed using the optimization output for the minimum
average power consumption and the maximum robustness (Sections 3.3.1 and 3.3.2, respectively, of D3.4).
Table 3 shows the collected data for each of the DAG sets that characterize the PCC use-case. As you can see,
all the solutions found by the optimizer do respect the respective end-to-end DAG deadlines once deployed
on the target platform. When optimizing for the minum average power consumption, the solver did not place

18

D4.4 - Evaluation of run-times
Version 1.0

any task on the GPU, discouraged by the high power consumption associated with that platform component.
On the other hand, when we optimized the use-case for maximum robustness the solver did offload one of
the runnables (of DAG n. 2) to the GPU. This indeed results in a faster end-to-end response time, both on
the average case and with respect to the maximum registered value by RTDAG during the execution of several
repeated DAG set activations, at the cost of slightly increased power consumption. A plot representing the
response times measured per DAG activation is shown in Figure 10.

3.3.3.2 Evaluation on the Xilinx UltraScale+ Platform

Optimization Objective DAG
Response Time [ms]

Deadline [ms]
Minimum Average Maximum

Minimum Power 0 0.143 0.150 0.172 5
Minimum Power 1 3.087 3.099 3.138 5
Minimum Power 2 22.150 22.216 23.086 33
Maximum Robustness 0 0.142 0.149 0.157 5
Maximum Robustness 1 3.096 3.110 3.154 5
Maximum Robustness 2 21.823 21.866 22.828 33

Table 4: Response times measured on the Xilinx UltraScale+ ZCU102 platform for the PCC use case, depending on the
optimization objective.

(a) Minimum average power (b) Maximum robustness

Figure 11: Execution of the PCC use case with RTDAG on the Xilinx UltraScale+ ZCU102 platform, depending on
the optimization objective.

The same methodology described in the previous section has been used to evaluate the performance of an
emulatedDAG set deployed according to specification providedby theoptimizer on theother target platformof
the project, the Xilinx UltraScale+ ZCU102. Again, two different deployment configurations have been selected
by the optimizer, depending on the optimization objective: one that minimizes the power consumption and
one that maximizes the robustness of the system with respect to real-time constraints.
For FPGA-accelerated tasks, we used the same IPs described in Section 3.3.2. Tasks that in the original specifi-
cation provide both a software-based and an accelerated implementation, the same function is implemented
both as a sequential software function and as an hardware IP (e.g., matrix multiplication). The right implemen-
tation is then selected at runtime according to the deployment configuration selected by the optimizer.
Table 4 shows the collected data for each of the DAG sets executed on the Xilinx UltraScale+ platform. Also in
this case, we confirmed that once deployed on the target platforms the applications behave as expected and
respect their end-to-enddeadlines. Again, we see that the configuration found for theminimumaverage power
consumption objective does not take advantage of the FPGA accelerator present on the platform, while the

19

D4.4 - Evaluation of run-times
Version 1.0

one that maximizes the robustness does select one runnable (of DAG n. 2) to execute on the FPGA. Similarly
to the other platform, the solution that maximizes the system robustness does present faster average and
maximum end-to-end response times, at the cost of slightly increased power consumption. Figure 11 shows
the measured response times per DAG activation depending on the selected configuration.

3.4 Experimental evaluation of dynamic mapping algorithms

This section analyzes the performance of two mapping algorithms, based on an actual implementation in the
LLVM-based runtime of AMPERE. This implementation considers the heuristics from D3.4 [4] which have per-
formed better in the simulations. This implementation considers separate per-thread queues, similar to LLVM
basic (dynamic) algorithm, providing therefore heuristics for both the allocation phase (selecting which thread
tomap) and dispatching phase (in each thread selecting the next task part to execute). For the allocation phase,
two best fit scheduling heuristics are considered, which take into account the minimum total execution time
(MTET) of the queues, and the minimum number of task parts (MNTP). For the dispatching phase, a minimum
execution time (MET) algorithm is implemented.
The heuristics are compared to LLVM’s default scheduler which implements a version of the work-stealing
scheduler, which is known to be highly performant [20]. The implementation uses theAMPERE adapted version
of LLVM , which contains additional specifications for the clang front-end and the OpenMP runtime to support
the creation of the TDGs. This has no impact in the scheduler and the evaluation in this section. Note that the
work-stealing feature of the LLVM OpenMP runtime is disabled for the execution of the mapping algorithms,
to reduce the variability in the runtime executions.
This evaluation considers as benchmarks, theHeat and SparseLU kernels from real-world applications, provided
in the AMPERE taskgraph benchmarks 4. The Heat application includes a Heat diffusion simulator implemented
with Gauss-Seidel method, which shows a Stencil computation. The SparseLU application contains a SparseLU
matrix decomposition, which shows an irregular form of parallel tree, retracting to one final task. Heat is an
application with a regular TDG structure (Figure 12a, in the evaluated case the number of tasks in the TDG is
640 and the number of data dependencies between the tasks is 2128), while the latter is an application with a
complex configuration (Figure 12b, in the evaluated case, the number of tasks is 1496 and the number of data
dependencies is 3960). The number of tasks and block sizes was configured to allow for a sufficiently high
number of tasks with relevant individual processing.
The applications are executed on an NVIDIA Jetson AGX Xavier with an 8-core NVIDIA Carmel Arm v8.2 64-
bit CPU and 32GB 256-bit RAM, with 4 and 8 threads and under spread and close bindings. The applications
are executed using the off-the-shelf operating system for the board (Linux), executing in the highest real-time
priority class, with the used platform being fully dedicated to the experiment.
To enhance the confidence of results, each evaluation is executed in r*i iterations, where r is the number of
runs (30 runs, in this evaluation) and i is the number of iterations on each run (50 iterations for each run, in
this evaluation). The first 10% experiments are also removed from each run to avoid anomaly numbers at the
warm-up stage, as well as the outliers (due to spurious kernel events) are removed from all the results. Both
MTET and MET algorithms use execution time as the mapping metric. In order to reduce runtime overhead,
mapping is based on offline estimation of worst-case execution time (as shown in D3.4[4]).
Figure 13 shows the response times of the Heat application under different configurations. The outliers are
removed from the results (2.93% for Dynamic in ‘4 close’, where the response time is above 7 s). The results
indicate that the application response time is decreased in all the cases by increasing the number of threads,
showing the scalability of the algorithms. The difference between the heuristics and the Dynamic algorithm
(LLVM’s default scheduler) is not very considerable in the first case, while it is noticeable in the remaining
cases. The reason is that (i) less cache misses (i.e., L2 Data Cache) in the first case, where the spread binding
is used, which cause the algorithms to behave very similarly, and (ii) Dynamic uses a work-conserving policy
4https://gitlab.bsc.es/ampere-sw/wp2/general-information/

20

D4.4 - Evaluation of run-times
Version 1.0

(a) Example of Heat DAG with 16 tasks. (b) Example of SparseLU DAG with 30 tasks.

Figure 12: Sample DAGs

without considering the temporal features (e.g., task execution time) in the mapping process, which causes to
increase the response time rather than the heuristics. Furthermore, the performance of MTET-MET is slightly
better than MNTP-MET in the cases with 4 threads (where most of the threads are busy during the mapping
process), while MNTP-MET works slightly better in the cases with 8 threads (where some of the threads may
be idle in the mapping, depending on the number of tasks executing in parallel). This achievement indicates
that selecting the thread based on considering the total execution time of tasks in the queues is a suitable
procedure for the mapping when the number of threads is low, but selecting the thread with considering the
number of tasks in the queues is an appropriate strategy when the number of threads is high. The reason is
that the overhead inMNTP (by considering the number of tasks in each queue, which is easier to determine) is
lower than that in MTET (by calculating the total execution time of tasks in each queue based on the execution
time of each task). However, this overhead ismostly sensible in the results by increasing the number of threads
to 8.

Figure 13: Results of evaluation with Heat

Figure 14 illustrates the implementation results for the SparseLU application. The outliers are removed from

21

D4.4 - Evaluation of run-times
Version 1.0

the experiments (0.2% for Dynamic, 0.67% for MNTP-MET, and 0.13% for MTET-MET in ‘4 spread’ where the
response time is above 17 s, 0.2% for Dynamic in ‘4 close’ where the response time is above 17 s, 0.53% for
MNTP-MET in ‘8 spread’ where the response time is above 8 s, as well as 0.27% for MNTP-MET in ‘8 close’
where the response time is above 8 s). The results represent the scalability of the algorithms, similar to the
Heat application. They show that the performance of the heuristics is higher than Dynamic, where the number
of threads is 4, while Dynamic works slightly better, where the number of threads is 8. However, the difference
between them in the cases with 8 threads is not very high (the difference between Dynamic and MNTP-MET
in ‘8 spread’ is 1.08686 s and the difference between Dynamic and MTET-MET in ‘8 close’ is 0.142967 s). The
reason is that there is a considerable number of tasks executing in parallel, in this application, but the heuris-
tics work efficiently when the number of threads is not high (that is, the workload in the queues is high). In
addition, the efficiency of MTET-MET is better than MNTP-MET in the results, except in ‘8 spread’ (however,
their difference in this case is 0.429553 s). The reason is that MTET-MET considers task execution time for
selecting the thread, and therefore it works well in the applications with a complex configuration, where the
workload in the allocation queues is high. Note that the efficiency of MTET would overcome its weakness on
overhead (rather than MNTP) in the applications with a complex configuration.

Figure 14: Results of evaluation with SparseLU

22

D4.4 - Evaluation of run-times
Version 1.0

4 Conclusions
In this document, we have summarized the latest activities carried out by AMPERE partners in the context of
WP4, contributing to the design and implementation of the final run-time architecture supporting deployment
of real-time workloads on highly heterogeneous platforms with GPU and FPGA acceleration. We showed re-
sults from the experimental evaluation carried out by partners on various components of the final run-time ar-
chitecture that have been realized in AMPERE, including experimentation with synthetic workloads and bench-
marks, as well as with models coming from the AMPERE use-cases. From these results, we can conclude that
the AMPERE final run-time architecture, coupled with the off-line toolchain described in WP2 and WP3 deliv-
erables (and evaluated in D3.4 [4]), and the operating system and hypervisor components described in WP5
deliverables (and evaluated in D5.4 [1]), is a viable and suitable solution to deploy software components on
highly heterogeneous platforms, under a set of non-functional constraints including real-time responsiveness,
reliability and energy efficiency.

23

D4.4 - Evaluation of run-times
Version 1.0

5 Acronyms and Abbreviations
BSP Board Support Package
CPU Central Processing Unit

CUPTI CUDA Profiling Tools Interface
CSV Comma Separated Values
D Deliverable

DPR Dynamic Partial Reconfiguration
DVFS Dynamic Voltage and Frequency Scaling
EDF Earliest Deadline First

FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
KPI Key Performance Index

MDE Model-Driven Engineering
MET Minimum Execution Time
MILS Multiple Independent Levels of Safety/Security

MNTP Minimum Number of Task Parts
MPSoC Multi-Processor System on Chip
MTET Minimum Total Execution Time
MS Milestone
NFR Non-Functional Requirement

ODAS Obstacle Detection Avoidance System
OPP Operating Performance Points
OS Operating System

PAPI Performance API
PL Programmable Logic

PMC Performance Monitoring Counter
PMU Platform Management Unit

PS Processing System
SLG Synthetic Load Generator
SoC System on Chip

T Task
TDG Task Dependency Graph
WP Work Package

WCET Worst-Case Execution Time

24

D4.4 - Evaluation of run-times
Version 1.0

6 References
[1] AMPERE, “Deliverable D5.4, Evaluation of the operating systems and hypervisors,” June 2023.
[2] ——, “Deliverable D4.3, Integrated run-time energy support, and predictability, segregation and resilience

mechanisms,” September 2021.
[3] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo, “A framework for supporting real-

time applications on dynamic reconfigurable fpgas,” in Proc. of the IEEE Real-Time Systems Symposium
(RTSS 2016), December 2016, pp. 1–12.

[4] AMPERE, “Deliverable D3.4, Evaluation of multi-criteria optimizations,” June 2023.
[5] C. Scordino, L. Abeni, and J. Lelli, “Energy-aware real-time scheduling in the linux kernel,” 2018.
[6] K. Yang and J. Anderson, “On the soft real-time optimality of global edf on uniform multiprocessors,” in

2017 IEEE Real-Time Systems Symposium (RTSS), 2017, pp. 319–330.
[7] S. Tang, J. H. Anderson, and L. Abeni, “On the defectiveness of sched_deadline w.r.t. tardiness and affini-

ties, and a partial fix,” 2021.
[8] Linux kernel community, ““deadline task scheduling” from the linux kernel documentation,” 2023.

[Online]. Available: https://docs.kernel.org/scheduler/sched-deadline.html
[9] L. Abeni and T. Cucinotta, “Adaptive partitioning of real-time tasks onmultiple processors,” in Proceedings

of the 35th Annual ACM Symposium on Applied Computing, ser. SAC ’20. New York, NY, USA: Association
for ComputingMachinery, 2020, p. 572–579. [Online]. Available: https://doi.org/10.1145/3341105.3373937

[10] A. Stevanato, T. Cucinotta, L. Abeni, and D. B. de Oliveira, “An Evaluation of Adaptive Partitioning of Real-
Time Workloads on Linux,” in 2021 IEEE 24th International Symposium on Real-Time Distributed Comput-
ing (ISORC), 2021, pp. 53–61.

[11] AMPERE, “Deliverable D3.3, Energy optimisation framework, predictable execution models and analysis,
and Software resilient techniques,” September 2022.

[12] ——, “Deliverable D2.3, Programming model extensions and the multi-criteria performance-aware com-
ponent,” September 2022.

[13] NVIDIA Corporation, “Jetson AGX Xavier developer kit,” 2018. [Online]. Available: https://developer.
nvidia.com/embedded/jetson-agx-xavier-developer-kit

[14] AMPERE, “Deliverable D5.1, Reference parallel heterogeneous hardware selection,” 2020.
[15] NVIDIA Corporation, “CUPTI v11.6 user guide,” 2021. [Online]. Available: https://docs.nvidia.com/cupti
[16] T. Cucinotta, A. Amory, G. Ara, F. Paladino, and M. D. Natale, “Multi-criteria optimization of real-time

DAGs on heterogeneous platforms under p-EDF,” ACM Transactions on Embedded Computing Systems,
Apr. 2023. [Online]. Available: https://doi.org/10.1145%2F3592609

[17] D. B. deOliveira, D. Casini, and T. Cucinotta, “Operating systemnoise in the linux kernel,” IEEE Transactions
on Computers, vol. 72, no. 1, pp. 196–207, 2023.

[18] D. B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta, “Demystifying the Real-Time
Linux Scheduling Latency,” in 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020),
ser. Leibniz International Proceedings in Informatics (LIPIcs), M. Völp, Ed., vol. 165. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 9:1–9:23. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/12372

[19] AMPERE, “Deliverable D2.5, Evaluation of performance-aware model transformations,” June 2023.
[20] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis & transformation,”

in Proceedings of the International symposium on code generation and optimization, 2004.

25

https://docs.kernel.org/scheduler/sched-deadline.html
https://doi.org/10.1145/3341105.3373937
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://docs.nvidia.com/cupti
https://doi.org/10.1145%2F3592609
https://drops.dagstuhl.de/opus/volltexte/2020/12372

	1 Executive Summary
	2 Updated AMPERE run-time architecture
	2.1 AMPERE run-time architecture overview
	2.2 FRED porting and integration with PikeOS/ElinOS
	2.3 Linux kernel changes for energy-aware real-time scheduling
	2.3.1 Swapping the RT and SCHED_DEADLINE scheduling classes
	2.3.2 Fixing energy-aware real-time scheduling on Linux

	2.4 Run-time mechanisms for resilience
	2.5 Run-time energy monitoring
	2.5.1 Updates to the energy model
	2.5.2 Evaluation of the energy monitoring framework
	2.5.3 Support for other platforms

	3 Evaluation of predictability of real-time tasks
	3.1 Implementing Multi-DAG Real-Time Application Scenarios on Linux
	3.1.1 Calibrating real-time tasks execution time
	3.1.2 Accelerated tasks implementation
	3.1.3 Jetson Xavier AGX

	3.2 Evaluating APEDF performance
	3.3 Experimental Evaluation on Linux
	3.3.1 Evaluation on a ODROID-XU4 Platform
	3.3.2 Evaluation on the Xilinx UltraScale+ Platform
	3.3.3 Evaluation of the PCC Use-Case

	3.4 Experimental evaluation of dynamic mapping algorithms

	4 Conclusions
	5 Acronyms and Abbreviations
	6 References

