
D5.4 Evaluation of the operating systems and
hypervisors

Version 0.3

Documentation Information

Contract Number 871669
Project Webpage https://www.ampere-euproject.eu/

Contractual Deadline 30.06.2023
Dissemination Level Public (PU)
Nature DEM
Authors Jan Rollo (SYS)Ida Maria Savino (EVI)
Contributors Claudio Scordino (EVI)Luca Cuomo (EVI)Tommaso Cucinotta (SSSA)Gabriele Ara (SSSA)Alessandro Ottaviano (ETHZ)Nils Wistoff (ETHZ)Darshak Sheladiya (SYS)Andrej Kruták (SYS)
Reviewer Luis Miguel Pinho (ISEP)
Keywords Multi-OS, RTOS, Linux, hypervisor, ROS, RISC-V

AMPERE project has received funding from the European Union’s Horizon 2020research and innovation programme under the agreement No 871669.

Ref. Ares(2023)4606998 - 03/07/2023

https://www.ampere-euproject.eu/

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

Change Log
Version Description Change

V0.1 Preliminary version
V0.2 Minor changes
V0.3 Internal Review

ii

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

Table of Contents
1 Introduction . 2

2 Hypervisor evaluation . 32.1 Inter-OS communication evaluation . 32.2 Separation property . 4
3 Erika RTOS evaluation . 63.1 Erika RTOS performance evaluation . 63.1.1 Erika RTOS on RISC-V . 63.1.2 Erika RTOS optimization . 83.1.3 Hardware design improvement . 93.2 RISC-V communication evaluation . 10
4 Linux evaluation . 124.1 Scheduling latency evaluation in ElinOS guest . 124.2 Impact of virtualization on real-time tasks . 134.2.1 Experimental test bench . 134.2.2 Overhead on tasks executing on the CPU . 144.2.3 Overhead on tasks executing on the FPGA . 14
5 Acronyms and Abbreviations . 16

6 References . 17

iii

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

Executive Summary

This deliverable aims at evaluating the performance of the software architecture developed inWP5 of the AM-PERE project. In particular, the evaluation is provided for the hypervisor, operating systems and communicationmiddleware developed in this WP.

1

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

1 Introduction
This deliverable aims at providing experimental results to evaluate the overall performance of the softwarearchitecture developed in WP5 (i.e. hypervisor, operating systems and communication middleware). The re-sults are given for the different configuration options and technological improvements developed in the WorkPackage.
For running the experiments, we have used the AMPERE reference platform consisting of a Xilinx ZCU102 eval-uation board [1]. The platform is based on a Xilinx UltraScale+™MPSoC device [2] which includes a quad-coreARM® Cortex-A53, a dual-core Cortex-R5 real-time processors, a Mali-400 GPU and a programmable FPGA.On the FPGA, we have synthesized a 64-bit CVA6 RISC-V soft-core [3] (also known as “Ariane”). Although theAMPERE project has selected also another platform (i.e. NVIDIA Jetson Xavier AGX), the performance mea-surements have been performed only on the Xilinx platform. The reason is twofold: the Xilinx platform can beconsidered a more complete platform (because it also contains a programmable FPGA and Cortex-R proces-sors); moreover, NVIDIA never provided the requested details for running PikeOS on its own platform.
The software architecture developed in AMPERE includes the PikeOS hypervisor and ElinOS, a Linux distributionexecuted as a guest VM of the PikeOS hypervisor [4, 5]. Both components are commercial products by partnerSYSGO. Furthermore, the sofware architecture includes Erika RTOS [6], a real-time operating system designedaccording to the OSEK/VDX and AUTOSAR Classic standards [7]. In the context of AMPERE project, Erika RTOShas been ported to run as a PikeOS guest on a Cortex-A processor and to run on a RISC-V processor synthesizedon the FPGA, integrating also the Micro-ROS protocol [8, 9] to communicate with the Linux OS counterpart.
This deliverable provides an empirical evaluation of the various components under different configurations.For example:

• the performance of the Erika RTOS has been measured when executed on different processors (namely,Cortex-A, Cortex-R and RISC-V);
• the performance of themiddleware for Inter-OS communication has beenmeasured for communicationtowards both Cortex-A and RISC-V;
• the scheduling latency of PikeOS Linux VM has been measured with and without the usage of the PRE-EMPT_RT real-time patch [10].

The document is organized as follows:
• Section 2 contains an empirical evaluation of PikeOS hypervisor. It contains an evaluation of the commu-nication latency between applications running on different PikeOS guests. It also contains a summary ofthe assurance on PikeOS that it enforces separation.
• Section 3 shows the performance evaluation of the Erika RTOS running on different processors and withdifferent levels of hardware/software optimization. Furthermore, it contains the performance evalua-tion for Inter-OS communication, where OSes run on different processors (i.e., Linux on Cortex-A andErika RTOS on RISC-V CPU).
• Section 4 contains an empirical evaluation of the Linux OS. More in detail, it contains the analysis ofscheduling latency in Linux-based PikeOS guest. Furthermore it contains the evaluation of the overheadintroduced by the virtualization on real-time applications, organized in Directed Acyclic Graphs (DAGs),running on a Linux-based guest.

2

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

2 Hypervisor evaluation
This section provides an empirical evaluation of the various components under the PikeOS hypervisor.
Section 2.1 contains the evaluation of the communication latency between applications running on differentPikeOS guests. Communication is based on the inter-guest communication mechanisms provided by PikeOSand the DDS-XRCE [9, 11] protocol, specifically designed for resource-constrained systems. Section 2.2 detailsthe capability of PikeOS hypervisor to provide separation of partitions.

2.1 Inter-OS communication evaluation

This section provides experimental results on the communication latency between applications running ondifferent PikeOS guests. With reference to the AMPERE scenario in Figure 1, both Linux and Erika RTOS run asvirtualized guests of the PikeOS hypervisor.

Figure 1: Inter-OS communication in PikeOS-based virtualized environment.
The inter-OS communication between an application running on Linux and one running on Erika RTOS is basedon DDS-XRCE [8, 9], a DDS protocol specifically designed by OMG for resource-constrained systems. In par-ticular, in the context of the AMPERE project we have integrated eProsima’s Micro XRCE-DDS stack on ErikaRTOS . In this client-server protocol, the devices (clients) communicate with an XRCE-DDS Agent (server) whichprovides the intermediate bridging service towards the DDS Data Global Space [11].
Data has been exchanged through a inter-guest communication provided by PikeOS (e.g., QPort). In order tominimize the communication latency between the OSes, both theMicro-ROS stack implemented in Erika RTOSand the XRCE Agent running on Linux exchange data only through QPort-based mechanisms. More in detail, aQPort was used to send data from the Linux agent to Erika RTOS application and another Qport was used tosend data in the opposite direction.
The communication latency has been evaluated through a “ping-pong” application that measured the round-trip time from Linux to ERIKA and back to Linux. More in detail, the “ping” application, running on the Linuxguest, publishes a message on the Ping topic. The XRCE Agent forward the messages to the topic subscribers.When the “pong” application, running on ERIKA guest, receives the Pingmessages, it publishes a newmessageon the Pong topic. Such message is forwarded by the XRCE Agent to all the subscribers of such topic. As shownin Figure 2, the communication latency∆T corresponds to the span of time between the time a Ping messageis transmitted and the time a Pong message is received in the “ping” application. It includes the delay due tothe periodic engine of the Micro-ROS framework.
The experimental results, contained in Table 1, show the minimum, average and maximum communicationlatencies, that include the delay due to the Micro-ROS framework and PikeOS Inter-OS communication mech-

3

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

Figure 2: Communication latency in the “ping-pong” application.
anism (i.e., QPort). Although the minimum value is slighlty higher than the delay of an inter-node communica-tion using ROS2 on Linux, the other values are comparable (or even lower, in the case of the maximum value)than the time needed on Linux for such kind of communication.
We can therefore conclude that themovement of part of the computation to ERIKA has not introduced a signif-icant penalty in terms of communication. On the other end, it has allowed to isolate and run such computationon a properly safety-critical RTOS.

∆T Experimental results
Min 1.015 msecAverage 1.185 msecMax 2.079 msec

Table 1: Ping-Pong time communication.

2.2 Separation property

The PikeOS hypervisor provides the capability to provide separation of partitions. For instance, it is publiclystated in the PikeOS Common Criteria for IT Security Evaluation (CC) scope document (called “Security Target”according to the CC [12]) that “The TOE (target of evaluation, that is the evaluated PikeOS system) is a Sep-
aration Kernel, which allows to effectively separate multiple applications running on the same platform from
each other. Such applications can range from small bare-metal programs up to entire Operating Systems. Non-
privileged applications may bemalicious, and even in that case the TOE ensures that malicious applications are
neither capable of harming other applications nor the TOE itself.
Separation Kernels aim to establish a degree of isolation between the applications on a single system (e.g.,
a hardware platform) which, in terms of security, is comparable to running the application executables on
physically separate platforms [13]. However, Separation Kernels also provide communication facilities that
allow the applications to interact with each other, if configured by the Integrator.
The TOE includes a wide range of additional features and functionalities such as direct memory access, process
control, memory management, different communication services and more. Together with the real-time ca-
pability of the TOE, this allows to build and operate embedded systems in areas with a high demand towards
security and safety such as automotive, avionics, medical devices, industrial and railway applications.
(...)

4

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

SYSGO defines separation as follows: The TOE separates partitions by managing their accesses to and usage of
resources, such as memory, devices, processors, and communication channels, as defined by the configuration.
Isolation of a partition is the absence of communication with other partitions, except partitions hosting the
components implementing the system API, when no communication channels or shared resources between the
partition and other partitions are configured. Isolation is a special case of separation.
Additionally, the TOE has the characteristics of an embedded real time operating system. Thus, the partitioning
is configured statically and the TOE does not include typical desktop operating system services (e.g. user login,
printer drivers). The TOEwill typically be installed and operated on a hardware platform suitable for embedded
systems.
The major security services provided by the TOE are:

• Separation in space of applications hosted in different partitions from each other and from the PikeOS
Operating System according to the configuration data,

• Separation in time of applications hosted in different partitions from each other and from the PikeOS
Operating System according to the configuration data,

• Control of information flows between applications hosted in different partitions via assigning to the par-
titions communication objects and access rights to those.

• Management of the TOE (e.g. system partition API) and the TOE data (e.g. threads, tasks).

”
Analyses: In order to show the separation ability of PikeOS across partitions, that is e.g., the performance of asoftware runningwithin a partitionwhenon the other partitions nothing is running, vswhen something is beingactively computing on the other partition, different analytical automatic/semiautomatic/manual analyses aredone: During the CC evaluation we had to give a structured argument, why these separation properties holdfor security. Similarly for safety, there is a PANA (Partition Analysis). It shows that partitions are separated. Inaddition each PikeOS service is analyzed regarding its WCEP (Worst Case Execution Path) including each delaywhich need to be considered. The analysis is available as part of safety certification artifacts.
Tests: On the test side, there are numerous functional tests of separation mechanisms and there is the PikeOSHigh Level Longrun testsuite, which fulfills the test objective in question to ensure separation. Furthermorethere is a test set, which contains stress test partitioning on multi processor platforms. SYSGO also runs fuzztesting. Tests are part of the evidence presented for the DO-178C, ISO 26262, IEC 61508, Common Criteriacertifications, as e.g. documented in [14]. These tests are run on target architectures (e.g. X86, ARM, PowerPC)in regular intervals.
In AMPERE, the partitions e.g. on the Erika setup (see AMPERE scenario in Figure 1) are (1) ELinOS and (2)Erika/ROS as guests and for this particular case the general separation property also holds. Note that in theAMPERE scenario, intentionally, there is a configured QPort-based communication channel between the par-titions, this is a good example of having an intentional controlled information flow (the control of the of theQPort is done by the applications), while maintaining separation otherwise.

5

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

3 Erika RTOS evaluation
This section details the performance evaluation of the Erika RTOS running on the different processors. Forrunning the experiments, we have used the processors available on the Xilinx ZCU102 evaluation board [1]: theARM Cortex-A53, the ARM Cortex-R5 and a CVA6 “Ariane” RISC-V soft-core synthesized on the FPGA [3]. Theactivity on RISC-V was included in the DoW even if not requested for executing the two specific use-case ofAMPERE. The momentum that RISC-V technology is experiencing (also and especially in Europe) has pushedthe consortium to look ahead and get prepared for the next technology transition which is expected to impactvarious application domains, including automotive.
Section 3.1 shows the performance evaluation of the Erika RTOS running on different processors and withdifferent levels of hardware/software optimization.
Section 3.2 contains the performance evaluation for Inter-OS communication, where OSes run on differentprocessors. In particular, we consider the scenario where Linux OS runs on ARM Cortex-A whereas Erika RTOSruns on the RISC-V CPU.

3.1 Erika RTOS performance evaluation

Section 3.1.1 describes experimental results on different processors. Section 3.1.2 details the RTOS optimizationsto obtain better performance in all the tested processors, whereas Section 3.1.3 describes the improvement ofthe hardware design for the synthetized CPU on the FPGA.

3.1.1 Erika RTOS on RISC-V

3.1.1.1 Baseline RISC-V description

On the FPGA, we have synthesized a CVA6 “Ariane” RISC-V CPU [3], an open-source design provided by partnerETHZ. The processor is a 6-stage, single-issue, in-order CPU implementing the I, M, A and C extensions of the64-bit RISC-V instruction set (RV64IMAC). It implements a Translation Lookaside Buffer (TLB) to accelerateaddress translations from the virtual to the physical domain, and branch-prediction through a branch targetbuffer (BTB) and branch history table (BHT).
The soft-core was synthesized on the target FPGA at 50 MHz with 32 kiB and 16 kiB data and instruction,respectively. CVA6 hosts three level sensitive interrupt signals as from the RISC-V Privileged Specifications [15]:

• machine-mode timer interrupt,
• machine-mode software interrupt (inter-processor interrupt)
• machine-mode/supervisor-mode external interrupts

The machine timer and machine software interrupt pending registers (mtip) and msip respectively) are pro-vided by a Core Local Interruptor (CLINT) hardware Intellectual Property (IP), which generates one interrupt foreach hardware thread (hart, a RISC-V execution context). While mtip generates timer interrupts with a spe-cific frequency, msip handles communications among processors by making interrupt request through writ-ing/reading in dedicated memory-mapped registers. The first 12 interrupts identifiers are reserved for timer,software and external interrupts in machine (M), supervisor (S) and user (U) privilege modes. Other interruptentries up to XLEN (for a RV64 processor such as CVA6, XLEN=64) [15] are platform specific and referred to as
local interrupts. Finally, the machine external and supervisor external interrupt pending registers meip/seipbring the information from external devices to the hart. The Platform Local Interrupt Controller (PLIC) [16]provides centralized interrupt prioritization and routes shared platform-level interrupts among multiple hartsvia the meip/seip interrupt signals.

6

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

3.1.1.2 What we measured

Since Erika RTOS is a real-time operating system designed according to the OSEK/VDX and AUTOSAR Classicstandards, the programming paradigm is “run-to-completion” and the configuration (e.g. number of tasks) isstatically defined at compile time. In this type of operating systems, the Interrupt Service Routines (ISR) aredivided in two categories:
• ISR1: High-priority low-overhead routines, that cannot call syscalls;
• ISR2: Priority-based routines which could imply a rescheduling once finished.

The real-time performance of the Erika RTOS has been measured through an existing benchmark [17] thatmeasures the time needed by the RTOS for performing a set of critical scheduling activities (e.g., task activationtime, task exit time, ISR call time, etc.). The test suite also allows to benchmark the latency of the two typesof interrupt service routines. The tested functions are, namely:
• act: activates a higher priority task and measures how long it takes to start its execution.
• actl: activates a low priority task and measures how long it takes to return to the caller.
• intdisable: measures the time needed for disabling all interrupts.
• intenable: measures the time needed for enabling all interrupts.
• isrentry: measures the time elapsed between the occurrence of an interrupt and the execution ofthe related ISR1 handler.
• isr2entry: measures the time elapsed between the occurrence of an interrupt and the execution ofthe related ISR2 handler.
• isrexit : measures the time elapsed between the end of an interrupt handler and when the taskpreviously running resumes execution.
• istentry: measures the time elapsed between the end of an interrupt handler and the execution ofthe task activated by such interrupt handler.
• istexit: measures the time elapsed between the end of a task handling an interrupt and when thetask previously running resumes execution.
• terml: measures the time needed for terminating a task and switching to a lower priority one.

3.1.1.3 Erika RTOS baseline performance

When porting the Erika RTOS on RISC-V we have taken inspiration from the previous FreeRTOS optimiza-tion [18]. However, CVA6 is a 64-bit CPU, and therefore it has not been possible to use the Embedded ABI [19]to shorten interrupt latency by reducing the number of caller-saved registers. Similarly, it has not either beenpossible to replace the standard integer instruction setwith a reduced-length instruction set explicitly designedfor embedded systems (e.g. RV32E). We have therefore only optimized interrupt handling, by emulating thelocal Interrupt Priority Levels (IPL) through an array statically generated by the OS tools.
Times have been measured in processor cycles, measured through the mcycle CSR register.
To evaluate the performance, the same benchmark has been executed also on both the Cortex-R5 and theCortex-A53 cores available on the ZCU102 board. For the Cortex-R5, the number of cycles have beenmeasuredthrough the PMCCNTR register. For the Cortex-A53, instead, cycles have been measured through the cyclecounter register PMCCNTR-EL0:
__asm__ __volatile__ ("MRC p15, 0, %0, c9, c13, 0 \n" : "=r" (cycles));

It is important to point out that, in case of Cortex-A, the RTOS has been run on top of a hypervisor accordingto the typical configuration used when running RTOSs on Cortex-A processors. This also allowed to have adirect comparison against the previouswork [20]. The presence of the underlying hypervisor, however, impliedsome non-negligible latency to trap and re-inject interrupts to the guest RTOS. The possible interference from

7

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

Linux on shared hardware resources has been removed by putting the Linux kernel in panic mode through thefollowing command:
$ echo c > /proc/sysrq-trigger

Table 2 reports the best-case and the worst-case number of the cycles measured over 100 consecutive runs.
Test CLINT RISC-V Cortex-R5 Cortex-A53name Min Max Min Max Min Max
act 355 1378 736 2554 442 2449actl 306 549 657 1123 429 631intdisable 53 147 116 522 85 753intenable 56 149 132 196 92 92isr2entry 369 1478 855 2333 3406 7185isrentry 240 686 366 528 3141 3561isrexit 157 479 127 174 303 334istentry 460 609 1020 1247 635 862istexit 534 701 759 771 674 710terml 521 597 862 1012 539 698

Table 2: RTOS performance (processor cycles).

3.1.2 Erika RTOS optimization

The next step consisted in optimizing the code of the RTOS to obtain better performance in all the testedprocessors. The first optimization consisted in modifying the ISR2 handling by avoiding to activate the ISR asa Task and directly calling the handler (i.e. not calling osEE_activate_isr2()). Moreover, similarly to [18],we have used the -O3 optimization level of the GCC compiler.
Table 3 reports the best-case and the worst-case number of the cycles measured over 100 consecutive runs.

Test CLINT RISC-V Cortex-R5 Cortex-A53name Min Max Min Max Min Max
act 347 1204 247 1197 129 984actl 267 551 172 280 88 90intdisable 36 156 20 116 16 152intenable 37 82 25 43 17 35isr2entry 357 1484 256 1044 2988 4945isrentry 229 692 170 286 2959 3060isrexit 143 342 127 587 241 247istentry 412 587 282 434 137 300istexit 460 606 351 848 328 339terml 405 484 295 372 172 196
Table 3: RTOS optimized performance (processor cycles).

If we restrict the analysis to the ARM Cortex-R5 (i.e. the direct competitor to RISC-V) and to the worst-casevalues, we obtain the values summarized in Table 4. From the presented values, we can see that the selectedRISC-V processor still shows lower performance than the competing ARM Cortex-R5 architecture.

8

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

We identify the bottleneck of the design in CVA6’s interrupt handling support. This, in fact, is not tuned fortargeting fast-interrupt management and low interrupt latency, typically enabled by the following HW/SWfeatures:
1. Hardware support for fine-grained and configurable interrupt priorities
2. Late-arriving interrupt behaviour (preemption and nesting) [21]
3. Banked stack pointer [21] (i.e. different stack pointers for different privilege levels)
4. Hardware support for automatic saving of registers during the context switch
5. Context save/restore optimization with back-to-back interrupts (tail chaining).

In the next section, we address the first two of the above mentioned design items. In particular, we extend thecurrent CLINT interrupt controller with a Core Local Interrupt Controller (CLIC) [22], and provide an evaluationon the performance of the Erika RTOS .
The remaining three design items involve the implementation of more advanced hardware features in theprocessor itself, and will be investigated in a future work.

Test Cortex-R5 CLINT RISC-V Overhead
act 1197 1204 +1%actl 280 551 +97%intdisable 116 156 +34%intenable 43 82 +91%isr2entry 1044 1484 +42%isrentry 286 692 +142%isrexit 587 342 -42%istentry 434 587 +35%istexit 848 606 -29%terml 372 484 +30%

Table 4: Worst-case overhead of CLINT RISC-V with respect to Cortex-R5.

3.1.3 Hardware design improvement
CVA6 lacks support for vectored interrupts, which store the interrupt service routine of each interrupt at a sep-arate address. Albeit increasing the code size as the vector table grows larger, this mechanism helps reducingthe overall interrupt response time. Furthermore, the PLIC does not support interrupt preemption (nesting),nor runtime-configurable interrupt priorities and interrupt threshold control, which have to be simulated en-tirely in software.
As a matter of fact, we first modified the CVA6 interrupt interface by replacing level sensitive interrupts withan handshake mechanism carrying the interrupt identifier and the request information to the processor, thatacknowledges the handshake. We then added support for vectored interrupts by implementing interrupt iden-tifier decoding logic to compute the jumping address of the vector table.
In a second step, we extended the CLINT with the Core Local Interrupt Controller (CLIC). We employed anopen-source implementation of the CLIC1 that reflects the latest status of the RISC-V CLIC draft specifications.The integration process included the addition of specific CSRs registers in the processor’s micro-architectureas from specifications [22]. The CLIC introduces several improvements to the standard CLINT with the aim ofachieving faster interrupt handling. Among those are dedicated memory-mapped registers for software con-figurable interrupt priority and levels at the granularity of each interrupt line, runtime-configurable interrupt

1https://github.com/pulp-platform/clic

9

https://github.com/pulp-platform/clic

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

mode and trigger type, support for interrupt preemption in the same privilege level (nesting of horizontal inter-rupts). Lastly, selective hardware vectoring enables the programmer to optimize each incoming interrupt foreither faster response (vectored mode) or smaller code size (non-vectored mode, when each interrupt trapsto the same exception handler address).
CVA6 interrupt handling was modified as in Fig. 3. In the improved design, the PLIC still arbitrates externalsystem level interrupts and the legacy CLINT generates the timer interrupt. These interrupts are routed throughthe centralized CLIC interrupt source. In the same fashion, inter-processor interrupts are fired by writing to thecorresponding CLIC memory-mapped registers. Lastly, using CLIC, local interrupts can be extended to up to4096 lines instead of being limited to the processor’s XLEN. In this work, we implemented 256 input interruptlines arbitrated by the CLIC.

Figure 3: (a) Original CLINT + PLIC interrupt interface. (b) Improved CLIC + PLIC interrupt interface.
Table 5 contains the experimental results on this new hardware architecture using the -O3 optimization levelof the GCC compiler. As it can be seen, the worst-case overhead on RISC-V has become closer to the onemeasured on the competitor chip (i.e. ARM Cortex-R5). In particular, for 4 metrics (i.e. act, isrentry, istentryand istexit) the number of cycles needed by the RTOS are equal or even lower than the ones needed on Cortex-R5. These experimental results confirm that RISC-V is a proven technology for running AUTOSAR Classic stacksof next-generation automotive MCUs.

Test Cortex-R5 CLIC RISC-V Overhead
act 1197 1151 -4%actl 280 464 +66%intdisable 116 128 +10%intenable 43 81 +88%isr2entry 1044 1226 +17%isrentry 286 539 +88%isrexit 587 481 -18%istentry 434 435 +0%istexit 848 774 -9%terml 372 408 +10%

Table 5: Worst-case overhead of CLIC RISC-V with respect to Cortex-R5.

3.2 RISC-V communication evaluation
This section provides experimental results on the communication latency between applications running onLinux and Erika RTOS respectively. As shown in Figure 4, the OSes run on different processors (i.e., Linux runson ARM Cortex-A and Erika RTOS runs on the RISC-V CPU). The design in this case is of course different: thehardware architecture is AMP instead of SMP. Therefore, isolation and resource partitioning are physical Char-acteristics rather than being provided by a hypervisor.
The inter-OS communication between an application running on Linux and one running on Erika RTOS is based

10

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

Figure 4: Inter-OS communication scenario.
on DDS-XRCE [8, 9], a DDS protocol specifically designed by OMG for resource-constrained systems. In par-ticular, we have integrated eProsima’s Micro XRCE-DDS stack on Erika RTOS . The clients communicate withan XRCE-DDS Agent running on Linux which provides the intermediate bridging service towards the DDS DataGlobal Space [11].
Data has been exchanged through a non-cached shared memory area, while the interrupt source has beenbased on the one for the UART device, since it was the only interrupt source visible by both operating systems.The involved processes on Linux (i.e. DDS Agent and ROS2 application) have been scheduled using a real-timepriority (i.e. SCHED_RR with priority 99).
The communication latency has been evaluated through a ROS2 “ping” application running on Linux and aMicro-ROS "pong" application running on Erika RTOS on RISC-V. As shown in Figure 2, the communicationlatency ∆T corresponds to the span of time between the time a Ping message is transmitted and the time aPong message is received in the “ping” application. It includes the delay due to the periodic engine of theMicro-ROS framework.
As shown in Table 6 the experimental results showed aminimum, average andmaximum communication timeof 2.0, 2.2 and 3.7 msec, respectively.

∆T Experimental results
Min 2.002 msecAverage 2.202 msecMax 3.668 msec

Table 6: Ping-Pong time communication.
It is important to highlight that the Micro-ROS framework has a periodic engine which added some delay tothe communication. In particular, the rclc_executor_spin_some function had a period of 1 msec, whileall the other interactions were event-driven. In the future, the design of the selected RISC-V processor couldbe improved by adding user-defined interrupt sources to be used in place of the UART.

11

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

4 Linux evaluation
This section contains an empirical evaluation of the Linux OS.
Section 4.1 contains the analysis of scheduling latency in Linux-based PikeOS guest. More in detail, the schedul-ing latency on ElinOS guest has been measured with and without the optimizations provided by the PRE-EMPT_RT real-time patch [10].
Section 4.2 contains the evaluation of the overhead introduced by the virtualization on real-time Linux ap-plications. More in detail, it shows the impact of the PikeOS hypervisor on the execution time of real-timeapplications, when using FPGA acceleration through the FRED framework for Linux. A similar evaluation onthe impact of PikeOS on more complex applications organized in Directed Acyclic Graphs (DAGs), is presentedin Deliverable D4.4 [23] instead.
Note that the Linux kernel in the AMPERE run-time stack has been modified to include the APEDF variant ofthe SCHED_DEADLINE real-time CPU scheduler, the APEDF-aware modifications to the schedutil componenthandling DVFS on Linux, and the runmeter energy monitor within the kernel, and its configuration has beencustomized in ELinOS to support the deployment under PikeOS. These are all described and evaluated in De-liverable D4.4 [23], given the tight relationship of these features with the predictability, energy estimation andefficiency capabilities of the Linux kernel in the AMPERE run-time subsystem, all aspects dealt with in the con-text ofWP4, where they are discussed also in relationship to themulti-criteria optimization framework realizedin WP3 (and described in Deliverable D3.4 [24]).

4.1 Scheduling latency evaluation in ElinOS guest
This section evaluates the real-time performance by measuring the scheduling latency of the OS, with andwithout the optimizations provided by the PREEMPT_RT patch. In every OS, in fact, there is always a delaybetween an activation event and the instant when the unblocked task starts execution, even for the highest-priority tasks. Typical sources of such delay include time for operating context switch and change of privilegelevel, timer granularity, preemptions from tasks at higher priority, contention on shared resources, criticalsections, etc. Such delay, known as “scheduling latency”, affects the response time of the task and imposesa lower bound on the deadlines that can be supported by the system. Therefore, it is essential to take intoaccount scheduling latencies at system design to understand whether the system can meet the needed timingrequirements.
We have compared the scheduling latency measured using two typical preemption models of Linux: the pre-emptible kernel (PREEMPT_LL, available on all Linux kernels) and the fully-preemptible kernel (PREEMPT_RT,provided by the PREEMPT_RT patch). In a Linux-based preemptible kernel (PREEMPT_LL) all kernel code, thatis not executing in a critical section, is preemptible. This allows reaction to interactive events by permittinga low-priority process to be preempted involuntarily even if it is in kernel mode executing a system call andwould otherwise not be about to reach a natural preemption point. Thus, applications run more ’smoothly’even when the system is under load, at the cost of slightly lower throughput and a slight runtime overheadto kernel code. On the other hand, a Linux-based fully-preemptible kernel (PREEMPT_RT) specifically aims toimprove scheduling latency by reducing the number and the length of critical sections in the kernel that maskinterrupts or disable preemptions [10].
Scheduling latency under Linux is typicallymeasured using cyclictest, a tracing tool that treats the kernel asa black box and reports the scheduling latency experienced by user-level tasks. In our experiments, we stressedthe system by creating interference through both the find command (generating I/O traffic by scanning thefilesystem on the SD memory and printing on console) and the stress tool, generating CPU, memory and I/Ointerference:
$./rt-test/stress -c 8 -i 8 -m 8 -vm-bytes 8000000

12

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

The worst-case latency has been measured through cyclictest using the following options:
$./cyclictest -mlockall -smp -priority=80 -interval=200 -distance=0
-duration=5m

As shown in Table 7, the worst-case latency is 13.4 ms without PREEMPT_RT and 159 µs with PREEMPT_RT. Itmeans that the latency has been reduced of about 99% by simply applying the patch and recompiling the Linuxkernel. The measured value is suitable for the execution of the real-time control tasks targeted by the AMPEREproject.
Preemption model : PREEMPT_LL
T: 0 (251) P:80 I:200 C:1499959 Min: 8 Act: 13 Avg: 12 Max: 82
T: 1 (252) P:80 I:200 C:1499547 Min: 6 Act: 11 Avg: 11 Max: 13404
T: 2 (253) P:80 I:200 C:1499266 Min: 6 Act: 11 Avg: 11 Max: 44
T: 3 (254) P:80 I:200 C:1499027 Min: 8 Act: 12 Avg: 11 Max: 67

Preemption model : PREEMPT_RT
T: 0 (261) P:80 I:200 C:1499980 Min: 8 Act: 13 Avg: 12 Max: 55
T: 1 (262) P:80 I:200 C:1499389 Min: 9 Act: 14 Avg: 12 Max: 159
T: 2 (263) P:80 I:200 C:1498969 Min: 9 Act: 12 Avg: 11 Max: 44
T: 3 (264) P:80 I:200 C:1498628 Min: 9 Act: 14 Avg: 12 Max: 53

Table 7: Measured scheduling latency using different preemption models.

4.2 Impact of virtualization on real-time tasks
To evaluate the impact of running real-time Linux applications organized in DAGs under PikeOS, we set up aseries of benchmarks on the Xilinx UltraScale+ ZCU102 target platform.
In particular, the purpose of these benchmarks is to evaluate the overhead introduced by the hypervisor onguest applications. In general, we distinguish between two kinds of overhead:

• One affecting all applications executing on the CPU; in this case, the overhead is due to the interferenceof the hypervisor when performing system calls or other routine activities, even without interacting withexternal devices.
• The second affects only FPGA-accelerated tasks; for these tasks, the overhead is due to the mediationof the hypervisor in the interactions between the operating system and the external FPGA device.

Once properly measured experimentally on the target platform, these two overhead contributions can betaken into account when performing the offline optimization steps described in Deliverable D3.4 [24], by in-flating each expected task execution time accordingly. This is coherent with the way we consider other kindsof overheads or high-priority interference from other tasks executing on the same machine as the target ap-plications (e.g., the FRED server application), as detailed in [25].
The benchmark applications that we prepared focus on evaluating these two kinds of overhead. First, eachoverhead is evaluated in isolation from one another. Then, we measure the overall impact of the hypervisoron more complex application scenarios that emulate the behavior of the industrial use-case applications. Thislast part is described in Deliverable D4.4 [23].

4.2.1 Experimental test bench
The test bench used to evaluate the impact of running software and hardware real-time tasks under PikeOSconsists of a set of micro-benchmark applications that perform a pre-fixed amount of work, either in software,or as hardware-accelerated runnables through the FRED framework.

13

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

For running the experiments, we have used the AMPERE reference platform consisting of a Xilinx ZCU102 eval-uation board1. All experiments execute with a Linux kernel version 5.10, compiled with PREEMPT_RT supportand with the CPU frequency fixed to the maximum available one on the target platform (1.2 GHz). Experimentswithout the hypervisor use a PetaLinux distribution2, while those with PikeOS3 (version 5.1) use ElinOS4 (ver-sion 7.1). Both kernel versions are compiled to provide support for the FRED framework to access the FPGAdevice and execute real-time hardware-accelerated calls.

4.2.2 Overhead on tasks executing on the CPU

For this evaluation, our benchmark application performs a pre-determined amount of work consisting of amix of both CPU and memory-bound operations. We then compare the time required to execute the sameworkload with and without the hypervisor (leaving any other configuration of the platform unchanged, e.g.,DVFS settings, scheduling priorities, etc.) to obtain a rough estimate of this overhead.
To eliminate most other forms of interference other than the hypervisor, most services executing on the oper-ating system have been disabled at boot, or shut down manually before the runs.
From our experimentation on the target Xilinx Ultrascale+ ZCU102 platform, we estimated approximately a1.18% overhead when executing an application on the CPU compared to the same scenarios without the hy-pervisor in place.

4.2.3 Overhead on tasks executing on the FPGA

The overhead experienced by hardware-accelerated tasks can be split into two different values:
• Reconfiguration overhead, related to only the time required to reconfigure a slot of the external FPGAdevice when replacing a hardware accelerator with another one (while time-scheduling accelerators ona slot of the FPGA fabric, as allowed by FRED);
• execution overhead, related to only the duration of an invocation to a hardware function that has al-ready been configured on one slot of the FPGA fabric, including the time needed to actually perform thecomputations of the hardware function, together with the time needed for the data exchanges betweenthe CPU and the FPGA device.

To evaluate these two kinds of overhead, we used some simple representative FRED-compatible hardwaretasks. These tasks perform some simple mathematical operations between vectors and matrices, and theyhave been obtained by using Xilinx High-Level Synthesis tool, in combination with DART (the latter is neededto compile hardware designs so that they can be deployed on FPGA slots using the FRED framework).
Table 8: Comparison between reconfiguration time of FPGA tasks without and with PikeOS, together with the estimatedoverhead in percentage.

Hardware Task Without PikeOS [ms] With PikeOS [ms] Overhead [%]
mul128 22.856 23.821 4.223
mul64 22.789 23.251 2.029

sum1024 22.808 23.872 4.664
xor1024 22.809 23.596 3.450

1See: https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html.2See: https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html.3See: https://www.sysgo.com/pikeos.4See: https://www.sysgo.com/elinos.

14

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.sysgo.com/pikeos
https://www.sysgo.com/elinos

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

Table 8 shows the difference between the time required to reconfigure the external FPGA device without thehypervisor and under PikeOS. From our experimentation, we observed that this overhead is overall propor-tional to the amount of time spent in reconfiguration without the hypervisor involved. Overall, we measuredan overhead up to 5% compared to the scenarios without PikeOS involved. Notice however that in the overallAMPEREworkflow this overheadwill be paid if two ormore tasks are selected for execution on the FPGA. If dur-ing the offline optimization phase only one task is selected to run on the FPGA, this cost is never experiencedby the target application.
On the other hand, the hypervisor introduces overhead also on the execution of a hardware task. Table 9compares the execution time of the various hardware tasks that we selected with and without the hypervisor.In this case, the overhead that we measured does not seem to be related to the original execution time of thehardware task. Rather, the hypervisor introduces a fixed amount of overhead, which of course impacts moresignificantly shorter hardware tasks. This is alignedwith the fact that, if no FPGA slot reconfiguration is needed,the hypervisor interference happens only during the interactions between the application main thread, andthe FRED server, as their socket-based interactions through a socket on Linux involves system calls that aremediated by the hypervisor. From our experimentation, the overhead introduced is no more than 0.057msper hardware task execution.

Table 9: Comparison between execution time of FPGA tasks without and with PikeOS, together with the estimatedoverhead in percentage.
Hardware Task Without PikeOS [ms] With PikeOS [ms] Overhead [%]

mul128 4.332 4.382 1.150
mul64 1.224 1.277 4.265

sum1024 0.843 0.898 6.422
xor1024 0.843 0.899 6.738

15

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

5 Acronyms and Abbreviations
CLINT Core Local Interruptor
CPU Central Processing Unit
DAG Direct Acyclic Graph
DDS Data Distribution Service
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit

IP Intellectual Property
MPSoC Multi-Processor System on a Chip

OS Operating System
PLIC Platform Local Interrupt Controller
ROS Robot Operating System
RTOS Real-time operating system
SoC System On Chip

UART Universal Asynchronous Receiver Transmitter
WP Work Package

XRCE eXtremely Resource Constrained Environments

16

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

6 References
[1] Xilinx, “Zcu102,” https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html.
[2] ——, “Ultrascale+mpsoc,” https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productTable.
[3] O. group, “CVA6 RISC-V CPU,” https://github.com/openhwgroup/cva6.
[4] SYSGO, “Pikeos,” https://www.sysgo.com/pikeos.
[5] ——, “Elinos,” https://www.sysgo.com/elinos.
[6] Evidence Srl, “Erika enterprise rtos,” http://www.erika-enterprise.com.
[7] AUTOSAR, “Classic platform,” https://www.autosar.org/standards/classic-platform/.
[8] “ROS2 - robotic operating system 2,” https://index.ros.org/doc/ros2/.
[9] “microros,” https://micro.ros.org/.
[10] The Linux Foundation, “The real-time linux collaborative project,” https://wiki.linuxfoundation.org/realtime/.
[11] eProsima, “microros agent,” https://github.com/eProsima/Micro-XRCE-DDS-Agent#readme.
[12] G. Fumaroli, “Security Target PikeOS Separation Kernel v5.1.3,” 2022. [Online]. Avail-able: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/Reporte1100/1146b_pdf.pdf?__blob=publicationFile&v=3
[13] J. Rushby, “Design and verification of secure systems,” in Eighth ACM symposium on operating system

principles, 1981, pp. 12–21, tex.lookup: Rushby1981design-and-verification-of-secure-systems. [Online].Available: http://www.sdl.sri.com/papers/sosp81/sosp81.pdf
[14] Bundesamt für Sicherheit in der Informationstechnik (BSI), “Certification Report BSI-DSZ-CC-1146-2022,” Tech. Rep., 2022. [Online]. Available: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/Reporte1100/1146a_pdf.pdf?__blob=publicationFile&v=1
[15] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanović, “The risc-v instruction set manualvolume ii: Privileged architecture version 1.9,” EECS Department, University of California, Berkeley, Tech.Rep. UCB/EECS-2016-129, Jul 2016. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html
[16] RISC-V Community, “RISC-V Platform-Level Interrupt Controller Specification,” https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc, 2022.
[17] C. Scordino, I. M. Savino, L. Cuomo, L. Miccio, A. Tagliavini, M. Bertogna, andM. Solieri, “Real-time virtual-ization for industrial automation,” in 2020 25th IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA), vol. 1. IEEE, 2020, pp. 353–360.
[18] R. Balas and L. Benini, “Risc-v for real-time mcus-software optimization and microarchitectural gap anal-ysis,” in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021, pp.874–877.
[19] R.-V. N.-I. Specifications, “Proposal for new Embedded ABI (EABI),” https://github.com/riscv/riscv-eabi-spec, Tech. Rep., 2019.
[20] P. Burgio, M. Bertogna, N. Capodieci, R. Cavicchioli, M. Sojka, P. Houdek, A. Marongiu, P. Gai, C. Scordino,and B. Morelli, “A software stack for next-generation automotive systems on many-core heterogeneousplatforms,”Microprocessors and Microsystems, vol. 52, pp. 299–311, 2017.
[21] ARM, “Cortex®-M3 Technical reference manual,” https://developer.arm.com/documentation/ddi0337/latest/, Tech. Rep., 2008.
[22] RISC-V Community, “"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Exten-sion,” https://github.com/riscv/riscv-fast-interrupt/blob/master/clic.adoc, 2022.

17

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productTable
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productTable
https://github.com/openhwgroup/cva6
https://www.sysgo.com/pikeos
https://www.sysgo.com/elinos
http://www.erika-enterprise.com
https://www.autosar.org/standards/classic-platform/
https://index.ros.org/doc/ros2/
https://micro.ros.org/
https://wiki.linuxfoundation.org/realtime/
https://wiki.linuxfoundation.org/realtime/
https://github.com/eProsima/Micro-XRCE-DDS-Agent#readme
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/Reporte1100/1146b_pdf.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/Reporte1100/1146b_pdf.pdf?__blob=publicationFile&v=3
http://www.sdl.sri.com/papers/sosp81/sosp81.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/Reporte1100/1146a_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/Reporte1100/1146a_pdf.pdf?__blob=publicationFile&v=1
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html
https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc
https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc
https://github.com/riscv/riscv-eabi-spec
https://github.com/riscv/riscv-eabi-spec
https://developer.arm.com/documentation/ddi0337/latest/
https://developer.arm.com/documentation/ddi0337/latest/
https://github.com/riscv/riscv-fast-interrupt/blob/master/clic.adoc

D5.4 - Evaluation of the operating systems and hypervisorsVersion 0.3

[23] AMPERE, “Deliverable D4.4 – Evaluation of run-times,” June 2023.
[24] ——, “Deliverable D3.4 – Evaluation of multi-criteria optimizations,” June 2023.
[25] T. Cucinotta, A. Amory, G. Ara, F. Paladino, and M. D. Natale, “Multi-criteria optimization of real-timeDAGs on heterogeneous platforms under p-EDF,” ACM Transactions on Embedded Computing Systems,Apr. 2023. [Online]. Available: https://doi.org/10.1145%2F3592609

18

https://doi.org/10.1145%2F3592609

	1 Introduction
	2 Hypervisor evaluation
	2.1 Inter-OS communication evaluation
	2.2 Separation property

	3 Erika RTOS evaluation
	3.1 Erika RTOS performance evaluation
	3.1.1 Erika RTOS on RISC-V
	3.1.2 Erika RTOS optimization
	3.1.3 Hardware design improvement

	3.2 RISC-V communication evaluation

	4 Linux evaluation
	4.1 Scheduling latency evaluation in ElinOS guest
	4.2 Impact of virtualization on real-time tasks
	4.2.1 Experimental test bench
	4.2.2 Overhead on tasks executing on the CPU
	4.2.3 Overhead on tasks executing on the FPGA

	5 Acronyms and Abbreviations
	6 References

