

D6.1 AMPERE ecosystem requirements and
integration plan

Version 1.0

Documentation Information

Contract Number 871669

Project Website www.ampere-project.eu

Contractual Deadline 30.07.2020

Dissemination Level PU

Nature R

Author Sara Royuela (BSC)

Contributors
Eduardo Quiñones (BSC), Arne Haman (Bosch), Claudio Scordino (EVI), Delphine
Longuet (TRT)

Reviewer Marco Merlini (THALIT)

Keywords Software Architecture, Integration plan, Interfaces among SW components

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 871669.

Ref. Ares(2020)4117597 - 05/08/2020

 1

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

Change Log

Version Description Change

V0.1 Initial draft by Sara Royuela and contributions by Eduardo Quiñones

V0.2 Contributions from EVI, BOSCH and TRT

V0.3 Reviewed by THALIT

V1.0 Ready for submission

 2

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

Table of Contents

1. Executive Summary.. 3

2. The AMPERE Software Development Ecosystem .. 3

2.1. Overview ... 3

2.2. Software Components .. 5

2.2.1. DSML .. 5

2.2.2. Parallel Programming Models ... 6

2.2.3. Compilers and synthesis tools ... 7

2.2.4. Analysis and Testing Tools ... 9

2.2.5. Runtime Libraries ... 9

2.2.6. Operating Systems and Hypervisor ... 9

2.3. Interfaces .. 9

3. Requirements of the AMPERE Software Development Ecosystem ... 12

3.1. AMPERE Ecosystem Business Goals (BG).. 13

3.2. Technical Requirements (TR) of the AMPERE Software Development Ecosystem 14

4. Software Development and Integration plan .. 16

4.1. Processes .. 16

4.1.1. Development and Integration Processes .. 16

4.1.2. Quality Assurance Process ... 18

4.2. Infrastructure .. 19

4.2.1. Development Platform .. 19

4.2.2. Integration Platform .. 20

4.2.3. Quality Assurance Tools... 21

4.3. Standards and Guidelines ... 22

4.3.1. Design Patterns .. 22

4.3.2. Code Comments .. 22

4.3.3. Programming Style .. 23

5. Acronyms and Abbreviations ... 23

6. References ... 23

 3

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

1. Executive Summary
This deliverable covers the work done during the first phase of the project within work package 6 (WP6)
“AMPERE System Design and Computing Software Ecosystem Integration”. The deliverable spans 7 months
of work and describes the work done in Task 6.1 “AMPERE ecosystem requirement specification” to reach
milestone MS1.

The deliverable describes the AMPERE software development ecosystem upon which the AMPERE use cases
will be developed, deployed and executed. Concretely, it identifies the set of software components and
tools that will form the AMPERE ecosystem, and it provides a short description of each component.

One of the key features of the AMPERE ecosystem will be its capability to instantiate multiple software
architecture configurations, incorporating different software components. The objective of this feature is
to cover different system necessities to fulfill performance requirements, while guaranteeing the non-
functional requirements (NFR) imposed by the cyber-physical interactions. This key feature requires each
software component to define a clear interface, described in this deliverable, to ensure a seamless
integration with the rest of components.

Finally, this deliverable also provides the development and integration plan for the AMPERE project. It
includes the tools, techniques and methodologies that will be shared among all partners in order to ensure
the quality of the final product.

The first milestone of Task 6.1 has been carried out successfully and all objectives of MS1 have been reached
and documented in this deliverable.

2. The AMPERE Software Development Ecosystem
This section describes the components forming the AMPERE software ecosystem and the relations among
them.

2.1. Overview
AMPERE addresses each of the requirements later defined in Section 3 by developing a software
development ecosystem incorporating components from multiple computing areas, including embedded
computing, cyber-physical systems (CPS), software engineering, data analytics, and high-performance
computing (HPC). This unique (an heterogeneous) combination of software components aims to efficiently
transform high-level model driven engineering systems into highly efficient and scalable parallel software
including the non-functional requirements of the system at programming model, compiler, runtime,
operating system (OS) and architectural levels.

Figure 1 shows the overall AMPERE software development ecosystem including the main software
components. Concretely, it consists of:

• The Domain Specific Model-Driven layer (WP1). This layer contains the selected Domain Specific
Modelling Languages (DSMLs) interface that will be used to develop the AMPERE use-cases.
Additionally, it also defines the meta model driven abstraction interface for the underlying
components to communicate with this layer. AMPERE aims to consider the following DSMLs:
AMALTHEA [1], CAPELLA [2] and AUTOSAR [3] and AUTOSAR ADAPTIVE [4].

• The code synthesis tools and compilers layer (WP2). This layer contains the software tools
(compilers like Mercurium [5], GCC [6] and LLVM [7], and FPGA frameworks like Vivado [8]) in
charge of generating the optimized parallel code based on the requirements specified in the DSML
and the information gathered by the tools for multi-criterion analysis. For this purpose, it also
defines the meta parallel programming model interface gathering the information exposed in the
meta model driven abstraction and the results of the analysis of the multi-criterion optimization

 4

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

layer. The meta parallel programming model will be then transformed to the underlying high-level
parallel programming models (PPMs) supported by the processor architecture. The actual
transformation will be performed by the compilers. The high-level PPMs act as the interface of the
underlying parallel runtime frameworks responsible of orchestrating the parallel execution.

• The multi-criterion optimization layer (WP3). This layer corresponds to the tools in charge of
statically analyzing the non-functional requirements (NFR) of the system, as described in the meta
parallel programming models and the meta model driven abstraction interfaces. Based on this
information, the previous layer will have the required information (through the meta parallel
programming model interface) so the transformation to the final parallel code can be done
according to the results of the analysis phase.

• The runtime layer (WP4). This layer corresponds to the parallel runtimes, including GOMP [9],
Nanos [10], KMP [11], Vivado [8] and CUDA [12], and is in charge of fulfilling the requirements
defined at analysis phase while ensuring the performance. This layer will rely on the low-level PPM
interfaces supported by the underlying OS, being Pthreads [13] the most commonly used in Linux.

• The operating system (OS) and hypervisor layers (WP5). This layer corresponds to the OS, including
Linux [14] and ERIKA Enterprise [15] (the latter implements the AUTOSAR middleware), and the
hypervisor, PikeOS [16], in charge of providing safety and security system guarantees through
isolation mechanisms. The hypervisor provides the Hardware Abstraction Layer (HAL) interface
responsible of interacting with the underlying parallel processor architectures; in AMPERE, the
Xilinx Zynq ZCU102 and the NVIDIA Jetson AGX will be supported (see Deliverable D5.1 [17] for
further details).

Figure 1. AMPERE Software development ecosystem: components, relationships and interfaces.

High-level Parallel Programming Model

Domain Specific Modelling Language

AUTOSAR AMALTHEA CAPELLA WP1

Mercurium GCC

Vivado

Use cases

LLVM

WP3

Predictive Cruise
Control

Obstacle Detection and
Avoidance System

performance, energy,
resiliency and timing

Analysis tools

Meta Parallel
Programming

Model

DSML

Synthesis Tools & Compilers Multi-criterion
optimization

GOMP Nanos KMPRuntime

Meta Model Driven Abstraction

FRED

Linux ERIKAOperating System & Hypervisor PikeOS

Parallel Hardware

WP5

WP4

Profiling

CUDA

Xillinx Zynq ZCU102 NVIDIA Jetson AGX

WP2

Monitoring

Hardware Abstraction Layer (HAL)

Low-level Threading Library

 5

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

2.2. Software Components
AMPERE has carefully selected the software components that will form the AMPERE ecosystem, prioritizing
those owned by the AMPERE partners or offered as open source with a large community behind. By doing
so, we envision to reduce the time-to-market and maximize the exploitation opportunities of the AMPERE
ecosystem.

Table 1 identifies the initial set of software components that aims to be included in the AMPERE ecosystem,
the WP in which the component will be evaluated, the owner and the license. This list will be revised (and
updated if needed) in Deliverable D6.2 “Refined AMPERE ecosystem interfaces and integration plan”, at
MS2.

Table 1. Initial selection of AMPERE software components at MS1.

Next subsections briefly introduce the different components of the AMPERE development ecosystem.

2.2.1. DSML
The development of the CPS is described using the DSML provided by the model driven framework.
Different frameworks support different DSML to describe the software components and elements that form
the system (at different granularity level) and the communication mechanisms existing among them. The
most important software components of the four DSMLs considered in AMPERE are presented in Table 2
(see Deliverable D1.1 [18] for further details).

Software Layer / WP Software component WP Owner License

Domain Specific
Modelling Language
(DSML)

AUTOSAR

WP1

AUTOSAR Proprietary

AMALTHEA BOSCH (BOS) Open source

CAPELLA
Thales Research and
Technology (TRT)

Open source

Artificial Intelligence TensorFlow WP1 Google Open source

Parallel
Programming
Models

OpenMP

WP2

OpenMP Open source

CUDA NVIDIA Proprietary

Compilers and
Hardware Synthesis
Tools

Mercurium

WP2

BSC Open source

GCC GNU Open source

LLVM LLVM Open source

Vivado Xilinx Proprietary

Analysis and Testing
Tools

Multi-criteria Analysis
and Testing Tools

WP3 AMPERE Open source

Runtime Libraries
(RTL)

GOMP

WP4

GNU Open source

Nanos BSC Open source

KMP LLVM Open source

Fred SSSA Open source

Operating Systems
Linux

WP5

Linux Open source

ERIKA Enterprise Evidence (EVI) Open source

Hypervisors PikeOS SYSGO (SYS) Proprietary

 6

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

Table 2. Software components included in the considered DSML.

DSML Main software components

AMALTHEA

An open-source modeling and development platform for automotive applications
(compatible with AUTOSAR), which defines the following main software
abstractions1:

• Tasks / ISRs (Interrupt Service Routines) representing schedulable entities
including activation information (Stimulus Model)

• Constraint model for defining timing constraints, e.g. for tasks end event chains

• Event model for describing causal relationships and end-to-end event chains

• Runnables describing the actual executed code including information about
execution time and accessed labels (=memory access patterns)

• Labels (shared variables) exchanged by Runnables

• Channels describing larger data elements stored in memory, useful for describing
e.g. streaming data

• Modes for defining different operational modes of the software

• Mapping model describing the mapping of SW entities to HW elements

• Scheduler model and Scheduler allocations to define scheduler policies and
responsibilities.

AUTOSAR
Classic/Adaptive

A methodology for component-based development of automotive software for
electronic control units (ECUs). The relevant modeling concepts of AUTOSAR classic
are compatible and covered in a very similar manner by AMALTHEA. Advanced
topics addressed by AUTOSAR adaptive, mainly POSIX-based operating systems
publish-subscribe messaging patterns, service-oriented middlewares, can also be
covered by AMALTHEA in a similar fashion.

CAPELLA

An open-source methodology and tool for model-based system engineering, which
provides SysML-inspired diagrams at different levels of abstraction to describe the
architecture and the behaviour of a system. It offers extensions for dedicated
modelisation, enabling for simulation and analysis, for example for timing
requirements of multi-processor real-time systems, through the Tideal extension and
the Time4Sys platform implementing the UML-MARTE meta-model. Examples of
concepts supported by the real-time extension of Capella:

• hardware resources (processors)

• tasks with best- and worst-case execution times, deadlines, priorities, activation
mode (periodic, sporadic, bursts…)

• task dependencies

• various scheduling policies (EDF, Round Robin, FIFO, Priority Based…)

2.2.2. Parallel Programming Models
The parallel programming models are the tools used to translate the information specified in the DSML into
the executable code that better exploits the architecture while ensured the NFR. This deliverable considers
four different parallel programming models: OpenMP, OmpSs, OpenCL and CUDA. The most important
features of them are summarized in Table 3 and Table 4 (see D2.1 [19] for further details).

1 Find more information at: https://www.eclipse.org/app4mc/help/app4mc-0.9.8/index.html#section3.14

 7

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

Table 3. Comparison of the presented parallel programming models based on parallelism patterns and architecture abstraction.

 Parallelism Architecture abstraction

Parallel
Programming

Model

Data
parallelism

Asynchronous
task

parallelism
Host/device

Abstraction of
memory
hierarchy

Data and
computation

binding
Explicit data mapping

OpenMP
parallel for

simd
task/taskloop

Host and device
(target)

OMP_PLACES,
teams and
distribute

proc_bind
map(to|from|tofrom|
alloc)

OmpSs for task
Host and device
(target/
implements)

ndrange(n,
G1,…, Gn,
L1,…,Ln)

-
copy_in/copy_out/
copy_inout/copy_deps

CUDA <<<…>>>

Async kernel
launch and
memcpy,

CUDA graphs

Device only
Blocks/threat
shared
memory

- cudaMemcpy

OpenCL kernel clEnqueTask Host and device
Work-group
and work-
item

- bufferWrite

Table 4. Comparison of the presented parallel programming models based on synchronizations, mutual exclusions, language
binding, error handing and tool support.

 Synchronizations

Mutual
exclusion

Language
library

Error
handling

Tool support Parallel
Programming

Model
Barrier Reduction Join

OpenMP barrier reduction taskwait
Locks, critical,
atomic, single,
master

C/C++ and
Fortran based
directives

cancel OMPT interface

OmpSs - reduction taskwait critical, atomic
C/C++ and
Fortran based
directives

- Extrae [20]

CUDA _syncthreads - - atomic
C/C++
extensions

-
NVIDIA profiling
tools

OpenCL
work_group
barrier

work_group
reduction

- atomic
C/C++
extensions

exceptions
System/vendor
tools

2.2.3. Compilers and synthesis tools
The compiler and synthesis tools are in charge of translating the meta parallel programming model,
containing the data extracted from the DSML and included by the analysis tools, into parallel code. The
different tools taken into consideration are described as follows:

• Mercurium [21] is a free source-to-source compilation infrastructure aimed at fast prototyping. The
compiler can be easily extended thanks to its plugin architecture, and the different plugins can be
dynamically loaded according to the chosen configuration. Mercurium supports OpenMP and
OmpSs, and has been extended to other programming models in the past. Figure 2 shows a high-
level overview of the architecture of the compiler. The image exposes several key factors of this
compiler: (1) Mercurium uses a common internal representation for C, C++ and FORTRAN, which
enhances the portability of any analysis and optimization between the three languages; (2) the
semantics of the parallel programming model are stored in the internal representation (IR) at high-

 8

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

level in order to be able to generate readable output code, hence the analysis works at the same
level as the user; and (3) it can use different native compilation toolchains in order to generate the
final executable, so specific compilers for FPGA, NVIDIA or SMP can be used.

Figure 2. Mercurium architecture overview.

• GCC [6] is a portable compiler supporting a wide variety of platforms. It can also be used for cross-
compiling and so producing executables for a different system from the one used by GCC itself. It
provides multiple frontends, including C, C++ and Ada, and also includes support for OpenMP and
OpenACC. Figure 3 shows a high-level overview of the GCC architecture: on the left, a zoom in to
the insights of the compiler, and on the right, an overview of the components of the tool-chain. The
IR used within the compiler, GIMPLE, is shared for all languages and, on top of it, the tool includes
several analysis and optimization phases.

• LLVM [22] is a compilation tool-chain designed around a language-independent IR that serves as a
portable, high-level language that can be optimized with a variety of transformations over multiple
passes. It supports several languages, including C, C++ and Ada, as well as OpenMP. Furthermore,
it can easily be extended by including new passes in the plugin architecture of the compiler (see
Figure 4).

Figure 4. LLVM architecture overview.

Figure 3. GCC architecture overview.

 9

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

2.2.4. Analysis and Testing Tools
A set of tools will be responsible of statically analyse at compile-time the fulfillment of non-functional
requirements and, at run-time monitor that these requirements are guaranteed. If not, counter
measurements must to be taken.

2.2.5. Runtime Libraries
The runtime libraries are in charge of orchestrating the parallel execution accordingly to the requirements
defined at analysis time and the code generated at compilation time. The runtime libraries considered in
this deliverable are described next:

• GOMP [23] is the OpenMP implementation for the C, C++ and Fortran compilers of GNU.

• Nanos [24] is the runtime developed at the Barcelona Supercomputing Center (BSC) to support
OmpSs and also OpenMP.

• KMP [25] is the OpenMP subproject of LLVM, with compatibility for GCC and Intel.

2.2.6. Operating Systems and Hypervisor
The software architecture envisioned in the AMPERE project includes multiple operating systems run
concurrently on the same platform.

To this aim, at the lowest level, the architecture is based on the PikeOS hypervisor by partner SYS [16] for
controlling the allocation of the various hardware resources (e.g. cores, memories, peripherals) among the
different OSs.

Then, on top of the hypervisor, two different operating systems are concurrently executed:

• A version of the general-purpose Linux OS [14], properly enhanced for improving real-time
response times and power efficiency

• ERIKA Enterprise [15], a safety-critical RTOS designed by partner EVI. This RTOS has been designed
for the automotive domain and is already used in production by renowned companies operating in
this market. In particular, the RTOS is compliant with the AUTOSAR Classic standard and is being
certified ISO26262.

2.3. Interfaces
The interfaces used to communicate the different components (represented in Figure 1 in italics and bold)
are described next:

• The DSML and the compiler(s) will communicate through the meta model driven abstraction
interface, which will identify (and generalize) the software components defined by the DSML (at
different granularity levels), and the interaction existing among them. Moreover, it will capture the
functional and non-functional requirements to ensure a correct execution of the system.

 10

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

The compiler(s) will be then responsible of transforming the meta model driven abstraction into
the meta parallel programming model interface represented in the form of a Direct Acyclic Graph
(DAG), or Task Dependency Graph (TDG). The DAG or TDG is a graph containing the units of
parallelism of a program as nodes, and the data and control dependencies between the tasks as
edges. The TDG shall be able to expose the nature and the different levels of parallelism and so
allow to identify the most suitable parallel hardware engine, as well as to guarantee the correctness
of the program considering lack of deadlocks and data-races. Error! Reference source not found.
shows a possible representation of the DAG using the JavaScript Object Notation (JSON) [26]. There,
a DAG is represented as a series of nodes, where each node has information about:

• The multi-criteria optimization component will communicate with the compiler through the meta
parallel programming model interface, by enriching the TDG, containing the functional and non-
functional requirements of the system and captured by the meta model driven abstraction. This
information will include an analysis of the of non-functional requirements, and the conditions to be
fulfilled at runtime, e.g., execution time, worst case execution time (WCET), energy consumption,
deadline, period, and priority, among others (see Listing 2).

• The compiler will communicate with the runtime through the parallel runtime API calls. As an
illustration, Table 5 shows a representative set of the API of the libgomp OpenMP runtime.

Table 5. OpenMP interface between the compiler and the runtime components for libgomp RTL.

OpenMP directive #pragma omp parallel num_threads(…) proc_bind(…) firstprivate(…) …

{
 “dag”:
 “nodes” : [
 {“id”: value, “data_in”: ítem-list, “data_out”: ítem-list,
 “successors”: node-list, “predecessors”: node-list,
 “execution_time”: value, “WCET”: value,
 “energy”: value, “deadline”: value,
 “period”: value, “priority”: value},
 …
]
 }
}

Listing 2. JSON example of a DAG representing the meta parallel programming model.

{
 “dag”:
 “nodes” : [
 {“id”: value, “data_in”: ítem-list, “data_out”: ítem-list,
 “successors”: node-list, “predecessors”: node-list,
 “locks”: lock-list},
 …
]
 }

}

Listing 1. JSON example of a DAG representing the meta model driven abstraction.

 11

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

Spawn
parallelism

Runtime call void GOMP_parallel(void (*fn) (void*), void* data, unsigned num_threads,
unsigned int flags)

Description Spawn a team of (num_threads) threads and execute the code associated to the
parallel region (fn) fulfilling the given memory model (data) and a set of
additional features (flags).

Work sharing OpenMP directive #pragma omp single

Runtime call bool GOMP_single_start()

Description Returns true if the executing thread is the one that shall execute the associated
region of code

Task distribution

(host)

OpenMP directive #pragma omp task depend(…) priority(…) firstprivate(…)

Runtime call void GOMP_task(void (*fn) (void*), void* data, void (*cpyfn) (void*, void*), long
arg_size, long arg_align, bool if_clause, unsigned flags, void **depend, int
priority)

Description Create an OpenMP task with the associate code (fn), data environment (data,
arg_size and arg_align), dependencies (depend), priority, and additional features
(if_clause and flags).

Task offloading
(device)

OpenMP directive #pragma omp target device(…) firstprivate(…) map(…) depend(…) nowait

Runtime call GOMP_target(int device, void (*fn) (void *), const void *unused, size_t mapnum,
void **hostaddrs, size_t *sizes, unsigned char *kinds)

Description Map variables (mapnum, hostaddrs, sizes, and kinds) to a device data
environment and execute the code associated with the target task (fn) on that
device.

Partial
synchronization

OpenMP directive #pragma omp taskwait

Runtime call void GOMP_taskwait()

Description Forces the suspension of the current task region until all child tasks2 generated
before the taskwait complete execution.

Full
synchronization

OpenMP directive #pragma omp barrier

Runtime call void GOMP_barrier()

Description Forces all threads of the team executing the barrier to complete any previous
task before continuing executing beyond the barrier.

Resiliency

(Error model)

OpenMP directive #pragma omp cancel construct-type

Runtime call bool GOMP_cancel(int which, bool do_cancel)

Description Activates cancellation of the innermost enclosing region of the type specified.

OpenMP directive #pragma omp cancellation point construct-type

Runtime call bool GOMP_cancellation_point(int which)

Description Introduces a user-defined cancellation point at which tasks check if cancellation
has been activated.

• The runtime will communicate with the OS through the low level threading library. As an
illustration, Table 6 shows a representative set of the API of Pthreads.

2 An OpenMP task is a child task of its generating task region, i.e., the code encountered during the execution of the
task.

 12

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

Table 6. OS-threads interface between the runtime and the OS components for Pthreads.

API call Description

int pthread_create(pthread_t* thread, const
pthread_attr_t* attr, void* (*start_routine)(void*),
void* arg)

Creates a new thread with identifier thread with
certain attributes (attrs). The thread starts
execution by invoking start_routine with arg as
argument.

int pthread_join(pthread_t thread, void** retval) Blocks the calling thread until the specified
thread terminates.

int pthread_barrier_wait(pthread_barrier_t*
barrier)

Synchronizes participant threads at barrier.

void pthread_exit(void* retval) Terminates a thread.

int pthread_cond_wait(pthread_cond_t *restrict
cond, pthread_mutex_t *restrict mutex)

Blocks the thread on a condition variable (cond).

int pthread_cancel(pthread_t thread) Sends a cancellation request to thread. The
effective cancellation depends on attributes
specific to the thread: cancelability state and
type.

• The hypervisor will communicate with the underlying parallel platform through the hardware
abstraction layer (HAL), including.

3. Requirements of the AMPERE Software
Development Ecosystem

Based on the Rational Unified Process® (RUP®) [27], “a requirement describes a condition or capability to
which a system must conform; either derived directly from user needs, or stated in a contract, standard,
specification, or other formally imposed document”. To avoid overlooking valuable statements in the
definition of the requirements of the system, a systematic approach is needed. FURPS+ [28] is a
classification system that organizes requirements in five groups: Functionality, Usability, Reliability,
Performance and Supportability, and introduces concerns about design, implementation, interface and
physical requirements. The different groups are detailed next:

1. Functional requirements: these represent the main features of the product, but also include other
aspects such as security, considering the services to protect access to certain resources or information,
reporting, considering the access to reporting facilities, or auditing, considering the access to trails of
system execution.

2. Usability: this aspect includes characteristics such as consistency, ease of use and aesthetics of the user
interface.

3. Reliability: this includes characteristics such as availability (the amount of system “up time”), accuracy
and the system’s ability to recover from failures.

4. Performance: this includes characteristics such as throughput, response time, recovery time, start-up
time, and shutdown time.

5. Supportability: this includes characteristics such as testability, adaptability, maintainability,
compatibility, configurability, and scalability.

The next subsections describe the situation of the industrial ecosystem relevant to the AMPERE project,
and introduce the business goals and the technical requirements based on that analysis and the
classification of requirements just introduced.

 13

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

3.1. AMPERE Ecosystem Business Goals (BG)
Based on the previous market analysis, we have identified the following BGs that the AMPERE software
development ecosystem has to incorporate.

ID BG1

Name Interoperability

Type Business goal

Description

The AMPERE ecosystem will ensure integration and interoperability among
SW components by incorporating de-facto market standards. This is a key
feature for a wider uptake of the AMPERE solution and for exploitation
purposes. Main interests will be those applied in parallel computing,
automotive and railway domains, and possible contributions to
standardization are also addressed.

Rationale
Ensure integration and interoperability of AMPERE software components with
existing solutions.

Involved stakeholders
Parallel processor architecture providers, OEMs and TIER1 automotive and
railway companies.

ID BG2

Name Ease of use

Type Business goal

Description

One of the main goals of the AMPERE solution is to help programmers in the
development of advanced CPS with safety requirements. To do this, AMPERE
will reduce the time of manually parallelization, by means of automatic
transformation of DSMLs to parallel code.

Rationale
Reduce time to market of deploying and executing new advanced CPS and
additional costs of training.

Involved stakeholders
OEMs and TIER1 automotive and railway companies, innovative SMEs
providing advance services to automotive companies.

ID BG3

Name High-performance

Type Business goal

Description

AMPERE aims to develop a novel software development ecosystem capable of
exploiting the performance capabilities of the most advanced parallel and
heterogeneous embedded processor architectures. To ensure high
performance, AMPERE will adopt parallel programming models used in the
HPC domain, such as OpenMP or OmpSs.

Rationale
The elaboration of information coming from multiple vehicle sensors with the
objective of increase the safety and comfort of vehicles.

Involved stakeholders
OEMs and TIER1 automotive and railway companies and any industry
developing or using advanced CPS with HPC requirements.

 14

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

ID BG4

Name Non-functional requirements

Type Business goal

Description

The AMPERE ecosystem will provide guarantees about the non-functional
requirements inherited from the cyber-physical interaction. The “level of
guarantees” will depend on the “criticality-level” of the functionality as
imposed by the automotive and railway standards.

Rationale
Enable the use of AMPERE technology in computing environments with non-
functional requirements, i.e. automotive and railway.

Involved stakeholders
OEMs and TIER1 automotive and railway companies and all stakeholders
developing or using advanced CPS with non-functional requirements.

ID BG5

Name Safety and security

Type Business goal

Description

The AMPERE ecosystem will guarantee the functional safety and security
aspects required at each integrity level (as defined in the automotive and
railway safety standards), which special interest on the isolation features
required by each standard in terms of space/time segregation methods at
component level.

Rationale
Ensure safety and security operation of the CPS processed by the AMPERE
ecosystem.

Involved stakeholders
OEMs and TIER1 automotive and railway companies and all stakeholders
developing or using advanced CPS with safety and security requirements.

3.2. Technical Requirements (TR) of the AMPERE Software
Development Ecosystem

The BG identified in the previous section results in the technical requirements described below.

ID REQ-SWARCH-TR1

Name Increase software productivity

Type Technical requirement

Description

AMPERE aims to promote productivity regarding the development and execution of
advanced CPS, in terms of programmability, portability and performance, as one of
the key competitive advantages of the AMPERE ecosystem. With such a purpose in
mind, AMPERE promotes the use of high-level parallel programming models that
provides the abstraction level needed to describe the parallelism of complex systems,
while hiding the complexity of the underlying processor architecture.

Rationale

Programmability. The developer is responsible for defining the functionality of the
CPS functionalities using the DSMLs. Then, the AMPERE ecosystem will transform it to
the parallel programming model supported by the underlying processor architecture.
The most advanced developers may also manually introduce parallelism with the
objective of further optimizing the parallel code. In this case, the AMPERE ecosystem
will guarantee the correctness of the parallel code by detecting potential race-
conditions and deadlocks. Additionally, the AMPERE runtime framework will

 15

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

efficiently manage the underlying computing resources, while hiding the complexity
of the parallel architecture. Overall, the developer is only responsible of defining what
the application does, but not how it does it.

Portability. The use of well-known parallel programming models in the HPC domain in
order to express the parallelism exposed by the applications enables to execute the
same application in multiple platforms. The performance portability, and so being
able to execute in different platforms with significant performance loss, is also an
important aspect. The underlying run-time systems included in the AMPERE
ecosystem are responsible for dealing with the internals of each specific technology
with the objective of maximizing the performance capabilities considering all possible
configurations.

Performance. The AMPERE ecosystem will be responsible of efficiently managing the
execution of the CPS on the most advanced parallel and heterogeneous embedded
processor architectures featuring GPU and FPGA accelerators. AMPERE will include
the proper parallel programming models to exploit the capabilities of the
architectures where the final functionalities will ride on. A number of parallel
programming models will be supported in the AMPERE ecosystem, including OpenMP,
and CUDA, which can exploit the benefits of each final architecture (multi-core,
NVIDIA GPU, FPGA, etc.).

ID REQ-SWARCH-TR2

Name Fulfillment of non-functional requirements

Type Technical requirement

Description
The AMPERE software development ecosystem aims to support the non-functional
requirements usually found in cyber-physical systems, such as time predictability,
energy-efficiency, resiliency, security and safety.

Rationale

In CPS, the interaction between the computing system and its environment needs to
cope with the non-functional requirements inherited from the application domain.
Control loops require guaranteed response times, and sensors and embedded
computers require energy efficiency. Moreover, CPSs must guarantee a correct
operation of the system and be resilient to potential errors introduced in the system
due to SW or HW faults. AMPERE will include these non-functional requirements as
first class entities in the software architecture. Developers will specify the
requirements through the DSML, which can span from critical guaranteed
requirements to best-effort approaches, depending on the criticality of the
application functionality. The component deployment will be either statically or
dynamically performed, to be able to provide the required quality-of-service (QoS).
Critical guarantees will be provided through static deployment of resources, whilst
softer requirements will be coped with a mix of static and dynamic adaptation
approaches.

ID REQ-SWARCH-TR3

Name Safety and security mechanisms

Type Technical requirement

Description The AMPERE software development ecosystem will incorporate the mechanisms
needed to fulfil the safety standards. It will take into account safety, considering the

 16

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

proper system design, and security, considering potential external threads, to
guarantee a correct CPS operation each integrity level.

Rationale
AMPERE will include the adequate isolation features required by each standard, taken
into account the impact that parallel execution has on composability, as well as
developing the required space and time segregation methods.

Each TR addresses one or more BGs, as defined in Table 7.

Table 7. Relation between business goals and technical goals of the AMPERE project.

Business goals Technical goals

BG1. Interoperability

REQ-SWARCH-TR1. Increase software productivity
BG2. Easy-to-use

BG3. Scalability and
performance

BG4. Real-time
requirements

REQ-SWARCH-TR2. Fulfillment of non-functional requirements

BG5. Safety and
security

REQ-SWARCH-TR2. Fulfillment of non-functional requirements

REQ-SWARCH-TR3. Privacy and security mechanisms to guarantee a legal
framework

4. Software Development and Integration plan
The AMPERE project involves a distributed team of several people from different institutions and areas of
expertise. This section defines the development and integration processes to be followed during the
execution of the project, inspired in the Scrum methodology [29]. Scrum is an iterative and incremental
framework for managing product development. It defines a flexible, holistic product development strategy
where a development team works as a unit to reach a common goal, and enables teams to self-organize by
encouraging close collaboration of all team members. The Scrum process is divided in Sprints. A sprint is a
timeboxed effort restricted to a specific duration. Each sprint starts with a planning event that identifies
the work to be done and makes an estimated forecast for the sprint goal. Each sprint ends with a sprint
review and sprint retrospective to identify lessons and improvements for the next sprints.

The remainder of this section is organized as follows: Section 4.1 introduces the development and
integration, as well as quality assurance processes for the AMPERE project; Section 4.2 defines the
infrastructure to be used in the project to enable all teams to share and coordinate information, and Section
4.3 describes the standards and guidelines to facilitate the usage of the infrastructure.

4.1. Processes
This section introduces two main processes: (1) the development and integration process, and (2) the
quality assurance process. The former focuses on providing means for a continuous development approach
that reduces risks and facilitates the building and releasing procedures, and the latter focuses on
guaranteeing high quality development results. These processes are specified in the following subsections,
including the activities related to each of the processes.

4.1.1. Development and Integration Processes
The AMPERE project is an aggregation of different components, as defined Section 2, which cooperate to
provide different functionalities. The software architecture integration process consists in a combination of

 17

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

all software components into a unique ecosystem, ensuring that all components work as defined in the
functional requirements and, the software architecture, as a whole, provides the desired functionalities.

The AMPERE project is split in four phases with a milestone at the end of each phase. The different phases,
defined in the project’s Grant Agreement [30]. Based on that, Figure 5 shows the integration process of the
different components of the AMPERE ecosystem. The process follows a tree structure and is done
incrementally with different integration steps in each one of the phases. The integration steps of each of
the phases are explained as follows:

• Phase 1:
o SYSGO: Ensure compatibility of the selected architecture with the DSML, the PPM, the runtime

and the hypervisor.

• Phase 2:
o BSC: Integrate the meta model driven abstraction (DAG) and the meta parallel programming

model (TDG) ensuring their compatibility.
o ISEP: Integrate the NFR, in an isolated manner, with the DAG and the TDG.
o BOS/THALIT: Ensure compatibility of the DAG and TDG with the use-cases (test suite at this

point of the project) evaluating functional safety and security focusing on composability.
o ETHZ: Integrate the NFR, in an isolated manner, with the runtime system.
o SYS: Integrate the NFR, in an isolated manner, with the hypervisor.

• Phase 3:
o BSC: Integrate proposals for extending the DSML and the PPM ensuring their compatibility.
o ISEP: Integrate the NFR, in an holistic manner, with the synthesis tools that use the extended

DAG and the extended TDG, as well as with the extended DAG.
o BOS/THALIT: Ensure the compatibility of the extended DSML and the extended PPM with the

use-cases ("final" use cases at this point of the project) evaluating functional safety and
security considering NFR in a holistic manner.

o SSSA: Integrate the NFR, in a holistic manner, with the runtime system.
o SYS: Integrate the NFR, in a holistic manner, with the hypervisor.
o EVI: Integrate the runtime and hypervisor systems, with holistic support for NFR, with the

architecture.

• Phase 4:
o TRT: Integration and evaluation of the complete AMPERE ecosystem.

 18

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

Figure 5. Tree-like diagram of the integration of the AMPERE ecosystem components.

4.1.2. Quality Assurance Process
The AMPERE software developers’ team is a highly distributed team of teams. This scenario requires taking
special care of the communication and interconnection among the different teams. With such a purpose,
several activities will be carried at, so the project provides high quality standards in terms of faults and
compliance with specified behavior. These activities will occur at different stages of the development
process. Some of them are continuous and some others are recurring. This section summarizes the quality
assurance activities performed in the development and integration process of the AMPERE project.

4.1.2.1. Scrum-based Methodology
The Scrum methodology reduces risks and removes dependencies between releases and integration
activities, allowing the synchronization of the different integration parts and the final validation. An
important aspect included in the methodology is the recognition that there will be unpredictable
challenges. For that reason, Scrum adopts an evidence-based empirical approach focusing on how to
maximize the team's ability to deliver quickly, to respond to emerging requirements, and to adapt to
evolving technologies and changes in the project conditions.

In Phases 1 and 2, each team in AMPERE will define its own sprints regarding contents and duration,
because each team is to work in isolation. After that, in Phases 3 and 4, all teams in the project will have to
define a common structure for the sprints, according the duration and contents of each sprint.

4.1.2.2. Unit Testing
During Phases 1 and 2, synthetic benchmarks will be developed and used together with unit tests in order
to validate the functionalities implemented in each component (this studies will be included in D1.2
“Analysis of functional safety aspects on single-criterion optimization and first release of the test bench

SYSGO

 19

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

suite”, to be delivered in month 15). These unit tests will allow determine if individual units of code are
correct, simplifying the later integration and facilitating future changes. Each time a new functionality is to
be added to the software ecosystem, the entire unit test suite should be executed, ensuring that all new
and existing tests run successfully upon code check in. To enhance the quality of the unit tests, a series of
guidelines shall be used, e.g., name tests properly, keep tests small and fast, cover boundary cases, and
prepare tests for code failing.

Initially, unit tests are to be tested manually by each component’s developers. A tool like automake [31]
can be used to automatize the execution of tests. In a second stage, in order for the unit testing to be useful,
the tests are to be performed automatically by a continuous integration system, as explained in Section
4.2.2.2.

4.1.2.3. Regression Tests
During the integration, changes to the implementation may be needed. In such case, regression tests shall
be run each time a modification is implemented in any part of the software ecosystem, so it can be
determined whether the changes break anything that worked prior to the change. Regression tests, overall,
consist on rerunning previous tests any time a modification is performed, as well as writing new tests when
necessary. Adequate coverage is paramount when conducting regression tests. For that reason, a series of
strategies and good practices must be followed, e.g., check possible side effects when fixing bugs, write
regression tests for each bug fixed, and remove redundant tests.

4.1.2.4. Bug and Issue Tracking
Bug and issue trackers allow managing lists of bugs and issues. This kind of application is used to create,
update and resolve project issues, providing the platform to maintain a knowledge base that includes
information that may help to resolve the issues. During the integration phase this is a key aspect to ensure
the correct collaboration and communication among the different teams that participate in the integration
of each particular component. In general, issue trackers have proven to be an effective lightweight task
management system, much more useful than real-time messaging o emailing. For this task, the AMPERE
project will use different tools, as detailed in Section 4.2.3.1.

4.2. Infrastructure
This section describes the tools and platforms that we have identified to potentially be used within the
AMPERE project. Infrastructure decisions are based on consortium agreements and are triggered by
common development standards as well as in particular the quality assurance and integration processed
described in Section 4.1.

4.2.1. Development Platform
Different components of the AMPERE software architecture will be implemented using different
development platforms. These are described in the next paragraphs.

4.2.1.1. Integrated Development Environments (IDEs)
The different groups working on the APERE project will take benefit of different IDEs. This kind of platform
provides several benefits:

• Code completion or code insight: IDEs recognize language’s keywords and function names. This
knowledge is typically used to highlight typographic errors, suggest a list of available functions
based on the appropriate situation, or offer a function’s definition from the official documentation.

• Resource management: IDEs manage resources such as libraries and header files, hence being
aware of any required resource missing. By using this feature, errors can be spotted at the
development stage and not later, in the compile or build stage.

 20

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

• Debugging tools: IDEs allow thoroughly testing applications before release by means of assigning
variable values at certain points, connecting different data repositories, or accepting different run-
time parameters.

• Compile and build: IDEs allow automatic translation from high-level language to object code for
languages that require a compile or build stage.

Some of the IDEs that will be used in the AMPERE project are listed as follows:

• Eclipse [32] comprises a Rich Client Platform (RCP) for developing general purpose applications, and
includes a powerful plug-in system. Components such as AMALTHEA and PikeOS are developed on
top of eclipse-based tools (i.e., App4mc and CODEO, respectively).

• Visual Studio Code [33] is a free cross-platform source-code editor. Partners including SSSA and
BOSCH will use this platform.

• VIM [34] is a highly configurable and robust text editor. Partners including BSC, THALIT and ETHZ
will use this platform.

• Other IDEs and editors that might be used by the AMPERE partners include Emacs [35], Visual
Studio [36], and Sublime Text [37].

4.2.1.2. Software Configuration Management
Software configuration management systems provide means for distributed teams to work collaboratively
together on shared documents. Within AMPERE, development will be carried out using Git [38]. This is a
free and open source distributed version control system able to handle very large projects with speed and
efficiency, because it has a tiny footprint and includes features like cheap local branching, convenient
staging areas, and multiple workflows. Git will be used in AMPERE for sharing code source, as well as
documentation such as deliverables, technical reports, papers and posters, among others. It is particularly
convenient within the AMPERE project, where a very distributed team develops in parallel several
components, because of its support for submodules: Git submodules allow to treat different projects as
separate, yet still be able to use one from within the other.

4.2.1.3. Instant Messaging and Transparency
Communication is of paramount importance in the development and integration process, particularly,
when working in remote teams composed of many people. For such a reason, not only communication but
also transparency is needed, because everybody must be aware of what is happening in all sides in order
to participate or even plan their own work.

The AMPERE partners will use Slack [39], a team communication tool that provides many benefits. The most
significant to the project are listed below:

• Integrates all team communications in one place. Furthermore, the communications can be
segmented into channels, organized by topics, and different users can be assigned to each channel,
depending on the visibility the channel must have.

• Integrates other web services, e.g., GitHub, for notification and viewing code check-ins, and
Dropbox and Google Drive, for file sharing.

• All content is searchable from one search box. Communications between several people can lead
to large amounts of information that is later hard to find. Slack search filter options narrow the
search on the conversations to specific channels, persons, or many other filters.

• Code snippets sharing. Slacks supports sharing code snippets with specific syntax highlighting. The
platform also supports other members to download it, view it in a raw mode, or leave comments
and modifications.

4.2.2. Integration Platform
This section describes the platforms that will be used for the integration of the AMPERE project.

 21

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

4.2.2.1. Automated Build System
The different components of the AMPERE project will use different tools for automated build system, listed
as follows:

• GNU Make [40] is a tool that controls the generation of executables and other non-source files of
a program from the program’s source files. A special file, makefile, details rules for building and
installing a package, and abstracts decisions such as the order for updating files or the need for
updating a particular file. The tool is not limited to any particular language or compilation tool-
chain. Partners including BSC, EVI, SSSA, SYS, THALIT and ETHZ will use this software.

• Cmake [41] is a family of tools to build, test and package software. It is used to control the
compilation process using platform and compiler independent configuration files, and generate
native makefiles and workspaces that can be used in any particular compiler environment. Partners
including EVI, BOS and ETHZ will use this software.

• Bitbake [42] is a build engine that follows recipes in a specific format in order to perform sets of
tasks. It includes a scheduler that creates a dependency tree to order the compilation, schedules
the compilation of the included code, and finally, executes the building of the specified, custom
Linux image. EVI will use this software.

• Apache maven [43] is a project management and comprehension tool that manages project
building, reporting and documentation from a central place. The primary goals of this platform are:
(1) making the build process easy, (2) providing a uniform build system, (3) providing quality project
information, (4) providing guidelines for best practices development, and (5) allowing transparent
migration to new features. THALIT will use this software.

The automated build system to be used for the integration of the software components of the AMPERE
project is yet to be defined.

4.2.2.2. Continuous Integration System
Continuous integration systems will be used to automatize the integration of the software components, as
well as for testing. Such systems focus on two goals:

1. Building and testing software projects continuously. Jenkins provides a flexible continuous
integration system, making it easy for developers to integrate changes to the project, and making
it easy for users to obtain a fresh build. The automated, continuous build increases the productivity.

2. Monitoring executions of externally-run jobs. This includes jobs such as cron jobs or jobs that are
run on remote machines. The results of these jobs are kept by Jenkins, as well as sent to developers
by email. Any form of checking these results allows developers to notice when something is wrong
faster and easier than using traditional testing mechanisms.

The AMPERE project partners will use two such systems: Jenkins [44] and Gitlab [45].

4.2.3. Quality Assurance Tools
This section covers the quality assurance tools used within the AMPERE project to provide means to test
and control code and thus system quality.

4.2.3.1. Issue Tracking Tool
The AMPERE partners will different tools to track issues and feature requests, depending on the
component. The most relevant are described as follows:

• GitLab [46] enables lean and agile project management from basic issue tracking to scrum project
management. Specifically, it allows:

o Manage and track issues: (1) collaborate and define specific business needs, (2) track effort,
size, complexity, and priority of resolution, and (3) eliminate silos and enable cross-
functional engagement.

 22

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

o Visualize work with issue boards: (1) visualize the status of work across the lifecycle, (2)
manage, assign and track the flow of work, and (3) enable Kanban and Scrum styles of agile
delivery.

o Maintain traceability through the DevOps Pipeline: (1) link issues with actual code change
needed to resolve issues, (2) visualize and track the status of builds, testing, security scans,
and delivery, and (3) enable entire team to share a common understanding of status.

Partners including BSC, SSSA, SYS and THALIT will use this software.

• Jira [47] is a commercial software product for issue tracking and project management that allows
agile software development. The most relevant features are the following:

o Kanban boards: allow visualizing the status of the tasks of the full team.
o Roadmaps: sketch out the big picture to ensure the roadmap connects to the team’s work.
o Reporting: provide reports with real-time insights into the performance of the team.
o Connect issues to code: Connect information from a version control into the issue tracking.

Partners including SYS, BOS and THALIT will use this software.

• Bitbucket [48] is a web-based version control repository compatible with Git. Among others, this
tool includes:

o Code review: allows creating merge request with designated approvers, and hold
discussions in the source code with inline comments.

o Continuous integration: allows building, testing and deploying with integrated continuous
integration and continuous delivery (CI/CD).

o Secure: saves the code in the cloud with IP whitelisting and required 2-step verification.
THALIT will use this software.

4.3. Standards and Guidelines
Development guidelines provide a basic set of rules to enforce consistent and standardized coding
practices. These guidelines are even more vital in a distributed software development project with teams
at geographically separated locations. The guidelines in this section assure code quality and complement
the processes defined in Section 4.1.

4.3.1. Design Patterns
Within AMPERE, developers will use design patterns when applicable. Design patterns [49] are time-tested
solutions to recurring design problems and offer several benefits:

1. Provide solution to issues in software development using a proven solution.
2. Design patterns make communication between designers more efficient.
3. Facilitate program comprehension.

4.3.2. Code Comments
Code comments help to explain and describe the actions of a certain block of code, describing behaviors
that cannot otherwise be clearly expressed in the source language and easing comprehension. AMPERE
developers will comment crucial parts in the source code to help other developers understand their code.
In spite of numerous benefits of having properly commented source code, comments can be misguiding if
not used properly. Thus a few points worth consideration while writing comments are:

1. Comments can get out of sync with the code if people change the code without updating the
comments. Thus, comments should always change together with code.

2. Good comments are hard to write and time consuming, but pay off in long term.
3. Adding comments can be counter-productive if the information provided by them is not relevant

to the part of code where they are provided. Hence, inline comments should describe the next line
of code.

 23

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

4.3.3. Programming Style
Programming style is a set of rules or guidelines used when writing the source code. These guidelines
include elements common to a large number of programming styles such as the layout of the source code,
including indentation, the use of white space around operators and keywords, the capitalization of
keywords and variable names, the style and spelling of user-defined identifiers, such as function, procedure
and variable names; and the use and style of comments.

Since the AMPERE project will include several components that are already under development and follow
their respective programming styles, developers in the frame of the AMPERE project will follow these styles.
For those parts of code which purpose is integrating different components of the AMPERE ecosystem, the
involved partners will define the programming style together the APIs, as introduced in Section 0.

5. Acronyms and Abbreviations
- API – Application Program Interface

- BG – Business Goals

- CAGR – Compound Annual Growth Rate

- CPS – Cyber Physical System

- CI/CD – Continuous Integration and Continuous Delivery

- CAGR – Compound Annual Growth Rate

- DAG – Direct Acyclic Graph

- DSML – Domain Specific Modelling Language

- HAL – Hardware Abstraction Layer

- IDE – Integrated Development Environment

- FR – Functional Requirement

- HPC – High-Performance Computing

- JSON – JavaScript Object Notation

- KPI – Key Performance Indicator

- MS – Milestone

- NFR – Non-Functional Requirement

- OS – Operating System

- QoS – Quality of Service

- RCP – Rich Client Platform

- RTL – Runtime Library

- TDG – Task Dependency Graph

- TR – Technical Requirement

- WP – Work Package

6. References

[1] C. Wolff, L. Krawczyk, R. Höttger, C. Brink, U. Lauschner, D. Fruhner, E. Kamsties and B. Igel,
"AMALTHEA -- Tailoring tools to projects in automotive software development," in 8th International

 24

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), 2015.

[2] P. Roques, Systems Architecture Modeling with the Arcadia Method: A Practical Guide to Capella,
Elsevier, 2017.

[3] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller, P. Heitkämper, G. Kinkelin, K. Nishikawa
and K. Lange, "AUTOSAR -- A Worldwide Standard is on the Road," in 14th International VDI Congress
Electronic Systems for Vehicles, Baden-Baden, 2009.

[4] S. a. S. A. Fürst, "Autosar the next generation -- the adaptive platform," CARS@ EDCC2015, 2015.

[5] Programming Models @BSC, "Mercurium," June 2020. [Online]. Available: https://pm.bsc.es/mcxx.
[Accessed June 2020].

[6] GNU, "GCC, the GNU Compiler Collection," June 2020. [Online]. Available: https://gcc.gnu.org/.
[Accessed June 2020].

[7] "The LLVM Compiler Infrastructure," June 2020. [Online]. Available: https://llvm.org/. [Accessed June
2020].

[8] T. Feist, "Vivado design suite," White Paper, vol. 5, p. 30, 2012.

[9] GNU, "https://gcc.gnu.org/projects/gomp/," January 2020. [Online]. Available:
https://gcc.gnu.org/projects/gomp/. [Accessed June 2020].

[10] Programming Models @BSC, "Nanos++," June 2020. [Online]. Available: https://pm.bsc.es/nanox.
[Accessed June 2020].

[11] "LLVM OpenMP Runtime Library," September 2015. [Online]. Available:
https://openmp.llvm.org/Reference.pdf. [Accessed June 2020].

[12] NVIDIA, "CUDA C++ Programming Guide," June 2020. [Online]. Available:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html. [Accessed June 2020].

[13] B. Nichols, D. Buttlar and J. P. Farrell, Pthreads programming: A POSIX standard for better
multiprocessing, O'Reilly Media, Inc., 1996.

[14] "Linux," June 2020. [Online]. Available: https://www.linux.org/. [Accessed June 2020].

[15] "Erika Enterprise RTOS v3 :: Erika3," June 2020. [Online]. Available: http://www.erika-
enterprise.com/. [Accessed June 2020].

[16] SYSGO, "PikeOS Certified Hypervisor," June 2020. [Online]. Available:
https://www.sysgo.com/products/pikeos-hypervisor/. [Accessed June 2020].

[17] AMPERE - WP5 (SYSGO), "D5.1 - Reference parallel heterogeneous hardware selection," 2020.

[18] AMPERE - WP1 (THALIT), "D1.1 - System models requirement and use case selection," 2020.

[19] AMPERE - WP2 (BSC), "D2.1 - Model transformation requirements," 2020.

[20] BSC Performance Tools, "Extrae Documentation release 3.8.0," June 2020. [Online]. Available:
https://tools.bsc.es/doc/pdf/extrae.pdf. [Accessed June 2020].

[21] Programming models @BSC, "Mercurium," June 2020. [Online]. Available: https://pm.bsc.es/mcxx.
[Accessed June 2020].

[22] "The LLVM Compiler Infrastructure," June 2020. [Online]. Available: https://llvm.org/. [Accessed June
2020].

 25

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

[23] GNU, "GOMP," January 2020. [Online]. Available: https://gcc.gnu.org/projects/gomp/. [Accessed
June 2020].

[24] Programming Models @BSC, "Nanos++," June 2020. [Online]. Available: https://pm.bsc.es/nanox.
[Accessed June 2020].

[25] LLVM, "Support for the OpenMP language," January 2020. [Online]. Available:
https://openmp.llvm.org. [Accessed June 2020].

[26] "JSON," January 2020. [Online]. Available: www.json.org. [Accessed June 2020].

[27] P. Kruchten, The rational unified process: an introduction, Addison-Wesley Professional, 2004.

[28] P. Eeles, "Capturing architectural requirements," IBM Rational developer works, 2005.

[29] K. Schwaber and M. Beedle, Agile Software Development with Scrum, vol. 1, Prentice Hall Upper
Saddle River, 2002.

[30] Barcelona Supercomputing Center, Instituto Superior de Engenharia do Porto, Eidgenoessische
Technische Hochschule Zuerich, Scuola Superiore di Studi Iniversitari di Perfezionamento Anna,
Evidence SRL, Rober BOSCH GMBH, THALES SA, THALES ITALIA SPA, SYSGO , "AMPERE Grant
Agreement," 2019.

[31] GNU, "Tests (automake)," June 2020. [Online]. Available:
https://www.gnu.org/software/automake/manual/html_node/Tests.html. [Accessed June 2020].

[32] The Eclipse Foundation, "Enabling Open Innovation & Collaboration," 2020. [Online]. Available:
www.eclipse.org.

[33] Microsoft, "Visual Studio Code," June 2020. [Online]. Available: https://code.visualstudio.com/.
[Accessed June 2020].

[34] "Vim," June 2020. [Online]. Available: https://www.vim.org/. [Accessed June 2020].

[35] GNU, "Emacs," June 2020. [Online]. Available: https://www.gnu.org/software/emacs/. [Accessed
June 2020].

[36] Microsoft, "Visual Studio," June 2020. [Online]. Available: https://visualstudio.microsoft.com/.
[Accessed June 2020].

[37] Sublime HQ, "Sublime Text," May 2020. [Online]. Available: https://www.sublimetext.com/.
[Accessed June 2020].

[38] Software Freedom Conservancy, "Git," 2020. [Online]. Available: https://git-scm.com/. [Accessed
June 2020].

[39] Slack, "Slack," 2020. [Online]. Available: slack.com. [Accessed June 2020].

[40] GNU, "Make," June 2020. [Online]. Available: https://www.gnu.org/software/make/. [Accessed June
2020].

[41] "CMake," June 2020. [Online]. Available: https://cmake.org/. [Accessed June 2020].

[42] Yocto Project, "BitBake User Manual," January 2018. [Online]. Available:
https://www.yoctoproject.org/docs/1.6/bitbake-user-manual/bitbake-user-manual.html. [Accessed
June 2020].

[43] "The Apache Maven Project," 2020. [Online]. Available: https://maven.apache.org/. [Accessed June
2020].

[44] "Jenkins," 2020. [Online]. Available: https://jenkins.io/. [Accessed June 2020].

 26

D 6.1 AMPERE ecosystem requirements and integration plan
Version 1.0

[45] Gitlab, "The first single application for the entire DevOps lifecycle," June 2020. [Online]. Available:
https://about.gitlab.com/. [Accessed June 2020].

[46] Gtilab, "Gtilab," 2020. [Online]. Available: gitlab.com. [Accessed June 2020].

[47] Atlassian, "Jira. Issue & Project Tracking Software," June 2020. [Online]. Available:
https://www.atlassian.com/software/jira. [Accessed June 2020].

[48] "Bitbucket. The Git solution for professional teams," June 2020. [Online]. Available:
https://bitbucket.org/product. [Accessed June 2020].

[49] E. Gamma, Design patterns: elements of reusable object-oriented software, Pearson Education India,
1995.

	1. Executive Summary
	2. The AMPERE Software Development Ecosystem
	2.1. Overview
	2.2. Software Components
	2.2.1. DSML
	2.2.2. Parallel Programming Models
	2.2.3. Compilers and synthesis tools
	2.2.4. Analysis and Testing Tools
	2.2.5. Runtime Libraries
	2.2.6. Operating Systems and Hypervisor

	2.3. Interfaces

	3. Requirements of the AMPERE Software Development Ecosystem
	3.1. AMPERE Ecosystem Business Goals (BG)
	3.2. Technical Requirements (TR) of the AMPERE Software Development Ecosystem

	4. Software Development and Integration plan
	4.1. Processes
	4.1.1. Development and Integration Processes
	4.1.2. Quality Assurance Process
	4.1.2.1. Scrum-based Methodology
	4.1.2.2. Unit Testing
	4.1.2.3. Regression Tests
	4.1.2.4. Bug and Issue Tracking

	4.2. Infrastructure
	4.2.1. Development Platform
	4.2.1.1. Integrated Development Environments (IDEs)
	4.2.1.2. Software Configuration Management
	4.2.1.3. Instant Messaging and Transparency

	4.2.2. Integration Platform
	4.2.2.1. Automated Build System
	4.2.2.2. Continuous Integration System

	4.2.3. Quality Assurance Tools
	4.2.3.1. Issue Tracking Tool

	4.3. Standards and Guidelines
	4.3.1. Design Patterns
	4.3.2. Code Comments
	4.3.3. Programming Style

	5. Acronyms and Abbreviations
	6. References

