

D6.2
Refined AMPERE ecosystem interfaces

and integration plan
Version 1.0

Documentation Information

Contract Number 871669

Project Website www.ampere-euproject.eu

Contratual Deadline 30.03.2021

Dissemination Level [PU]

Nature R

Author Sara Royuela, BSC

Contributors Thomas Vergnaud (TRT)

Reviewer Björn Forsberg (ETHZ)

Keywords Software ecosystem, requirements, interfaces, integration

The AMPERE project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 871669.

Ref. Ares(2021)4338066 - 03/07/2021

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

Change Log

Version Description Change

V0.1 Initial version by BSC

V0.2 Contributions by TRT

V0.6 Review by ETHZ

V1.0 Final review addressing comments by BSC

ii

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

Table of Contents

1 Introduction . 2

2 Refined AMPERE ecosystem requirements . 3

3 Refined AMPERE software development ecosystem . 5
3.1 Software components . 5
3.2 Interfaces . 5

4 Refined software development and integration plan . 10

5 Conclusions . 12

6 References . 14

iii

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

Executive summary

This deliverable covers the work done during the second phase of the project within WP6, AMPERE System
Design and Computing Software Ecosystem Integration. The deliverable spans 11months of work and describes
the work done in T6.2, Refined AMPERE ecosystem requirement specification to reach MS2.
This deliverable is a refinement of D6.1, AMPERE ecosystem requirements and integration plan, which de-
scribed (a) the AMPERE software development ecosystem for developing, deploying and executing the use
cases; (b) the set of software components and tools that will form the ecosystem; and (c) the integration plan.
As recommended by the experts in the consolidated interim report resulting from the project overview, this
deliverable also includes:

1. Refined explanation of the common interfaces among the WPs and software components.
2. Pointers to the deliverables explaining in detail the selected tools.
3. Better mapping of use case requirements in D1.1 [1], the model transformation requirements in D2.1 [2]

and the solution software components and tools for AMPERE ecosystem in D6.1 [3].
4. Gantt diagram detailing the integration process and plan.
5. Concrete targets that the AMPERE ecosystem should fulfill with regard to increased software productiv-

ity, portability, performance, and ease of use.
The secondmilestone of Task 6.1 has been carried out successfully and all objectives ofMS2 have been reached
and documented in this deliverable.

1

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

1 Introduction

WP6 is devoted to the integration of the different components of the AMPERE software ecosystem. In par-
ticular, T6.1, AMPERE ecosystem requirement specification encloses the work performed for producing this
deliverable, and concerns all components of the AMPERE software architecture. The general pipeline of the
AMPERE components is depicted in Figure 1 (further details will be provided Chapter 3).

Synthesis Tools & Compilers

Meta PPM
abstraction

Multi-criterion
Optimization

Parallel code
(e.g., OpenMP)

High-level PPM

Resource Allocation
(i.e., mapping)

+

Runtime +
OS/Hypervisor

Monitoring + dynamic
resource allocation

Profiling

Model

Platform description

System description
(Domain Specific Modelling Language)

Meta MDE
abstraction

Figure 1: AMPERE software architecture pipeline.

Table 1 lists the deliverables and tasks producing results that are subject to discussion in this deliverable.

Table 1: Tasks and deliverables related to D6.2
Deliverable D. leader Task T. leader
D1.1. System models requirement and
use case selection THALIT T1.1. System model requirement

specification and use case definition THALIT

D2.1. Model transformation requirements BSC T2.1. Model transformation
requirements specification BSC

D6.1. AMPERE ecosystem requirements
and integration plan BSC T6.1. AMPERE ecosystem

requirement specification TRT

To reach the goals of WP6, this deliverable continues the work started in D6.1, and contributes as follows:
Chapter 2 integrates the requirements described in D1.1 [1] and D2.1 [2] with the technical requirements de-
scribed in D6.1 [3] for the overall AMPERE ecosystem, and includes themetrics to evaluate the objectives of the
project; Chapter 3 augments the information provided in D6.1 [3] regarding the AMPERE software development
ecosystem, including the selected tools and the interfaces to communicate the different components; Chap-
ter 4 extends the integration plan already presented in D6.1 [3]; Chapter 5 provides the conclusions extracted
from the work done for this deliverable.

2

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

2 Refined AMPERE ecosystem requirements

Deliverable D6.1, AMPERE ecosystem requirements and integration plan introduced the FURPS+1 classification
system and, based on this, described the Business Goals (BG) to be included in the AMPERE software de-
velopment ecosystem, and the relation of these BG with the Technical Requirements (TR) of the ecosystem.
However, these requirements where not properly related with the those of different components analyzed
during the first phase of the project, as pointed by the reviewers in the First Technical Review of the project.
To cover this lack of unification and provide a consolidated view of the requirements of the whole project, this
section relates BG and TR (from D6.1 [3]) with the specific functional and non-functional requirements of the
use cases (from D1.1 [1]), and the requirements of the model transformation (from D2.1 [2]). For more detailed
information of the requirements themselves, refer to the corresponding deliverables.
Figure 2 illustrates the requirements of the project at different levels of abstraction (i.e., FURPS+, BG, TR,
use-cases and model transformation), and relates the requirements expected for each level with those of the
previous and next levels. The figure starts with the FURPS+ classification, which organizes requirements in
five groups (in yellow): functionality, usability, reliability, performance and supportability. Next, the figure
shows the five BG of the project (in green), i.e., interoperability, high performance, non-functional require-
ments (NFR), ease of use, and safety and security, and relates these BG with the FURPS concepts. For example,
FURPS performance is considered in two different BG: the throughput belongs to the high performance BG,
and the response time to the NFR. Then, the figure presents the three TR of the project (in blue), i.e., produc-
tivity (including programmability, performance and portability), non-functional requirements and safety and
security, and relates these concepts to the BG, e.g., productivity is related with interoperability and high per-
formance BGs. After that, the requirements of the use cases, as defined in D1.1 [1], are summarized in six groups
(in orange), i.e., development efficiency, energy, SW/HW platform, timing, safety and integrity, and accord-
ingly related to the TR. Finally, the figure incorporates the requirements of the model transformation (in pink),
which include the AMALTHEA modeling tool, the code synthesis tool and the OpenMP parallel programming
framework. These last requirements, all of them, are related to all previous requirements, as all three must
provide the features needed for the requirements to be propagated from the design to the implementation.

1FURPS+ is the acronym for Functional, Usability, Reliability, Performance, Supportability and the extension (+) includes three addi-
tional categories: Constraints, Interface Requirements and Business Rules.

3

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

Functional
requirements

Usability Reliability Performance Supportability FURPS

Interoperability
Ease of

use
High

Performance
Non-Functional

Requirements
Safety and

Security
BG

protection

throughput

scalability

configurability

fault tolerance
availability

response time

compatibility

interfaces
automation

Productivity
Non-Functional

Requirements
Safety and

Security

programmability
portability performance

TR

Safety: fault-tolerant

architectures, compliance to

IEC61508 (ODAS) or

ISO26262 (PCC)

Timing: end-to-end

latency, starvation,

deadlock, shutdown

on replicas failure,

recovery after failure

Development

efficiency:

AUTOSAR,

AMALTHEA,

CAPELLA

SW/HW: CPU/GPU,

parallel execution,

scheduling(e.g.,SCHED

_DEADLINE), ROS

Energy: <200W,

dynamic power

management

Use cases

Model

transformation

Integrity: robustness

(data accuracy), prevent

fake input data

AMALTHEA +

extensions
OpenMP +

extension
Code synthesis tool

+ extensions

Figure 2: Requirements of the AMPERE ecosystem: a hierarchical description.

4

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

3 Refined AMPERE software development ecosystem

This section summarizes the software components composing the AMPERE software architecture at MS2, as
depicted in Figure 3, and details the interfaces that will be used to communicate these components.

Figure 3: AMPERE software architecture.

3.1 Software components

The components of the AMPERE software architecture we previously defined in D6.1, including a set of analysis
tools for tracing. Table 2 lists all components, relating them with the deliverable where the components are
described in detail.

3.2 Interfaces

This section includes refined interfaces for the communication of the different components of the AMPERE
ecosystem. AtMS2, the communication of the components has been refined, as reflected in Figure 4. Thefigure
is a zoom-in in the box labeled as Synthesis tools and Compilers, from Figure 1, and shows components as boxes,
and communications as edges; the edges are further annotatedwith the interface used for the communication.
The different interfaces defined in the AMPERE project are explained next. Each interface corresponds to one
(or more, like for example in the case of the TDG) annotated edges from Figure 4.
Amalthea The system design communicates with the code generator using Amalthea (further explained in

D1.1 [1] and D2.1 [2]). Figure 5b provides the Amalthea model corresponding to the application
workflow in Figure 5a. The Predictive Cruise Control (PCC) use case [1] will be implemented using
Amalthea, while the Obstacle Detection Assistance System (ODAS) use case [1] will be imple-
mented using Capella. For the latter, a binding between Capella and Amalthea is being imple-
mented, and further details can be found in D6.3 [4].

Sources The code generator, APP4MC SLG (further explained in D2.2 [5]), generates C sources anno-
tated with OpenMP directives, based on the Amalthea model extended with support for non-
functional requirements. Figure 5c shows the code currently generated by the APP4MC SLG from
the model in Figure 5b.

5

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

Table 2: Deliverables detailing each component of the AMPERE software architecture
Domain Component Deliverable

Domain specific modeling language
AMALTHEA

D1.1. System models requirement
and use case selectionAUTOSAR

CAPELLA

Parallel programming models
OpenMP

D2.1. Model transformation requirements
CUDA

Compilers and hardware synthesis tools

Mercurium

D6.1. AMPERE ecosystem requirements
and integration plan

GCC
LLVM
Vivado

Analysis and testing

Multi-criteria analysis tools
D3.2. Single-criterion energy optimisation
framework, predictable execution models
and software resilient techniques

PAPI
Extrae
Paraver

Runtime libraries

Nanos

D6.1. AMPERE ecosystem requirements
and integration plan

GOMP
KMP
FRED

Operating systems
Linux D5.2. Single-criterion operating systems

and hypervisor softwareErika

Hypervisor PikeOS D5.2. Single-criterion operating systems
and hypervisor software

Timing

Design Code Gen

Graph to
Source

Source to
graph

Compiler convergence System
Amalthea Sources Binaries

Final
binaries

Profiling

Binaries
CPU/GPU/FPGA

TimingPowerResilienceHeterogeneity
TDG TDG TDG

Schedule

TDG

Convergence
annotator

Execution
traces

TDG

TDG

TDG

Figure 4: AMPERE’s offline pipeline (from modeling to binary generation).

Traces Based on the binaries generated by the compiler, particularly GCC, AMPERE will use tracing and
profiling tools, i.e., PAPI [6], Extrae [7] and Paraver [8], to obtain runtime data from the appli-
cation. Extrae stores the execution information in three different files: (a) *.prv, with the time
stamps and the events recorded, (b) *.pcf, with the configuration responsible for translating val-
ues contained in the trace into a more human readable values, and (c) *.row, a file containing

6

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

the distribution of the application across the cluster computation resources.
The format of the *.prv file [9] is as follows:
◦ Header:

“#Paraver (dd/mm/yy at hh : mm):total time:
#nodes(#cpus):#applications:app id(#cpus:#nodes),0”

◦ State record: intervals of the thread status.
“1:cpu id:app id:task id:thid:begin time:end time:state”

◦ Event record: punctual events
“2:cpu id:app id:task id:thid:time:event type:eventvalue”

The format of the *.pcf file is as follows:
DEFAULT_OPTIONS
LEVEL THREAD
UNITS NANOSEC
LOOK_BACK 100
SPEED 1
FLAG_ICONS ENABLED
NUM_OF_STATE_COLORS 1000
YMAX_SCALE 37

DEFAULT_SEMANTIC
THREAD_FUNC State As Is

STATES
0 Idle
1 Running
2 Not created
... // List of states

STATES_COLOR
0 {117,195,255}
1 {0,0,255}
2 {255,255,255}
... // List of colors (one for each state)

EVENT_TYPE
0 60000001 Parallel (OMP)
VALUES
0 close
1 DO (open)
2 SECTIONS (open)
3 REGION (open)

... // Descriptions of all event-type/event-values gathered during the tracing

Finally, the format of the *.row file is as follows:
LEVEL CPU SIZE N_CORES

name_core_1
name_core_2
... // Names of each core

LEVEL NODE SIZE N_NODES
node_name_1
... // Names of each node

LEVEL THREAD SIZE N_THREADS
name_thread_1
name_thread_2
... // Names of each thread

7

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

Figures 5d, 5e and 5f show the *.prv, *.pcf and *.row files generated for an execution of the code
Figure 5c in a 4-core shared-memory machine.
Extrae can gather information not only from the application source (e.g., OpenMP task creation
and OpenMP task instantiation), but also from hardware counters using the PAPI API. Further-
more, Extrae traces can be visualized with Paraver [8], as shown in Figure 5g. There, the exe-
cution of code in Figure 5c runs on 4 threads, although only 2 are used. Each value/color cor-
responds to one task (e.g., 1/blue corresponds to run_read_image, 2/green corresponds to
run_convert_image, etc.)

TDG The compiler, particularlyMercurium [10], is in charge of transforming the source code generated
by the APP4MC SLG into a Task Dependency Graph (TDG) that will be used and augmented by
the Multi-criterion optimization tools for NFR analysis. Figure 5h shows the TDG currently gen-
erated by Mercurium and refined by a Python script (further details in D4.2 [11]) for the model
in Figure 5c, and further augmented with information from the execution obtained with Extrae.
The format of the TDG is as follows:
struct tdg_node{

unsigned long id; // Task instance ID
unsigned short offin; // Starting position in tdg_ins
unsigned short offout; // Starting position in tdg_outs
unsigned char nin; // Number of input dependencies
unsigned char nout; // Number of output dependencies
unsigned int pragma_id; // Identifier of the task contruct
// The following members are filled with tracing information
int execution_time;
int papitot_counter_vals[8];

};
unsigned short tdg_ins[] = {...}; // Array of input dependencies
unsigned short tdg_outs[] = {...}; // Array of output dependencies

Currently, we recognize the execution timeand a set of interesting hardware counters (like energy
consumption). There is probably other data thatwill be needed in the TDG for the analysis of non-
functional requirements. For this reason, and with the aim of making the TDG easily extensible,
we have decided to add, for each node of the TDG (i.e., each Amalthea runnable, or OpenMP
task), an array of elements (i.e., papitot_counter_vals), which can be easily tuned and extended
if necessary.

Binaries This is the executable code generated by the compiler, either temporary (i.e., used during the
analysis phase), or final (i.e., deployed in the system). The lowering of the OpenMP directives
into runtime calls was already defined in D6.1 [3].

8

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

Read image

Convert image

Analysis A Analysis B

Merge and Print

i=[0:count-1]

Task

image

image

resultBresultA

Sequential runnable Concurrent runnables

(a) Application’s workflow. (b) AMALTHEA model.

1 #pragma omp parallel
2 #pragma omp single
3 {
4 #pragma omp task depend (out : Image)
5 run_read_ image ("") ;
6
7 #pragma omp task depend (inout : Image)
8 run_conver t_ image ("") ;
9
10 #pragma omp task depend (in : Image) \
11 depend (out : R e s u l t s A)
12 r u n _ a n a l y s i s A ("") ;
13
14 #pragma omp task depend (in : Image) \
15 depend (out : R e s u l t s B)
16 r u n _ a n a l y s i s B ("") ;
17
18 #pragma omp task depend (in : Re su l t sA , R e s u l t s B)
19 run_merge_ re su l t s ("") ;
20 }

(c) APP4MC SLG automatically generated
code.

1 #Pa rave r (09/06/2021 a t 1 2 : 2 5) :8001972503 _ns : 1 (4)
: 1 : 1 (4 : 1) ,0

2 . . .
3 1 : 1 : 1 : 1 : 1 : 9 0 0 5 7 0 : 9 0 2 6 2 9 : 1
4 2 : 1 : 1 : 1 : 1 : 9 00 5 70 : 600000 1 8 : 3 : 6 0000 1 1 8 : 3
5 2 : 4 : 1 : 1 : 4 : 9 0 0 7 7 1 : 4 0 0000 1 8 : 1
6 1 : 4 : 1 : 1 : 4 : 9 0 0 7 7 1 : 9 0 2 6 1 4 : 1
7 2 : 4 : 1 : 1 : 4 : 9 00 7 7 1 : 6 00000 1 8 : 3 : 6 0000 1 1 8 : 3
8 2 : 2 : 1 : 1 : 2 : 9 0 1 3 3 8 : 4 0 0000 1 8 : 1
9 1 : 2 : 1 : 1 : 2 : 9 0 1 3 3 8 : 9 0 3 2 7 5 : 1
10 2 : 2 : 1 : 1 : 2 : 9 0 1 3 3 8 : 600000 1 8 : 3 : 6 0000 1 1 8 : 3
11 2 : 3 : 1 : 1 : 3 : 9 0 1 3 4 1 : 4 0 0 000 1 8 : 1
12 1 : 3 : 1 : 1 : 3 : 9 0 1 3 4 1 : 9 0 3 2 7 1 : 1
13 2 : 3 : 1 : 1 : 3 : 9 0 1 3 4 1 : 6 00000 1 8 : 3 : 6 0000 1 1 8 : 3
14 1 : 4 : 1 : 1 : 4 : 9 0 2 6 1 4 : 9 0 4 9 8 6 : 7
15 2 : 4 : 1 : 1 : 4 : 9026 1 4 : 60000002 : 6
16 . . .

(d) Extrae trace (*.prv).

1 STATES
2 0 I d l e
3 1 Running
4 2 Not c r ea t ed
5 . . .
6 STATES_COLOR
7 0 { 1 1 7 , 1 9 5 , 2 5 5 }
8 1 { 0 , 0 , 2 5 5 }
9 2 { 2 5 5 , 2 5 5 , 2 5 5 }
10 . . .
11 EVENT_TYPE
12 0 60000001 P a r a l l e l (OMP)
13 VALUES
14 0 c l o s e
15 1 DO (open)
16 2 SECTIONS (open)
17 . . .

(e) Extrae trace (*.pcf).

1 LEVEL CPU S I Z E 4
2 1 . ampere_node
3 2 . ampere_node
4 3 . ampere_node
5 4 . ampere_node
6
7 LEVEL NODE S I Z E 1
8 ampere_node
9
10 LEVEL THREAD S I Z E 4
11 THREAD 1 . 1 . 1
12 THREAD 1 . 1 . 2
13 THREAD 1 . 1 . 3
14 THREAD 1 . 1 . 4

(f) Extrae trace (*.row).

(g) Paraver visualization of the Extrae trace.

1 / / I n fo rma t i on obta ined from the Extrae generated * . pc f f i l e
2 int p a p i t o t _ c o u n t e r _ f l a g s [8] = {42000050 , 42000059 , 42000000 , 42000002 , 42000008 , 42000055 ,
3 42000046 , 42001047 } ;
4
5 struct t d g_en t r y tdg [5] = {
6 { . i d = 1 , . o f f i n = 0 , . o f f o u t = 0 , . n i n = 0 , . nout = 1 , . pragma_id = 1 , . e x e cu t i on_ t ime = 434684 ,
7 . p a p i t o t _ c o u n t e r _ v a l s = { 1609349 , 1 529047 ,68 1 , 309 1 , 5473669128452663552 ,0 ,0 ,0 } } ,
8 { . i d = 2 , . o f f i n = 0 , . o f f o u t = 1 , . n i n = 1 , . nout = 2 , . pragma_id = 2 , . e xe cu t i on_ t ime = 741706 ,
9 . p a p i t o t _ c o u n t e r _ v a l s = { 1638966 , 1 776289 ,2022 ,8773 , 5473669128452663552 ,0 ,0 ,0 } } ,
10 { . i d = 3 , . o f f i n = 1 , . o f f o u t = 3 , . n i n = 2 , . nout = 1 , . pragma_id = 3 , . e xe cu t i on_ t ime = 473707 ,
11 . p a p i t o t _ c o u n t e r _ v a l s = { 1 620428 , 1 563059 , 1 1 22 , 4 1 25 , 5473669 128452663552 ,0 ,0 ,0 } } ,
12 { . i d = 4 , . o f f i n = 2 , . o f f o u t = 4 , . n i n = 2 , . nout = 1 , . pragma_id = 4 , . e xe cu t i on_ t ime = 5895201 ,
13 . p a p i t o t _ c o u n t e r _ v a l s = { 1628 180 , 145 1409 , 1 599 , 5407 , 5473669 128452663552 ,0 ,0 ,0 } } ,
14 { . i d = 5 , . o f f i n = 3 , . o f f o u t = 4 , . n i n = 2 , . nout = 0 , . pragma_id = 5 , . e xe cu t i on_ t ime = 5895201 ,
15 . p a p i t o t _ c o u n t e r _ v a l s = { 1645239 , 1452896 ,420 ,32 10 ,5473669128452663552 ,0 ,0 ,0 } }
16 } ;
17 unsigned short t d g _ i n s [] = {0 , 1 , 1 , 2 , 3 } ;
18 unsigned short t dg_ou t s [] = { 1 , 2 , 3 , 4 , 4 } ;

(h) TDG from Mercurium + script + Extrae tracing information

Figure 5: AMPERE’s interfaces pipeline example.

9

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

4 Refined software development and integration plan

D6.1 already defined the software development and integration plan thoroughly. Since then, the AMPERE
partners have just decided not to follow a Scrum based methodology, but an Agile [12] methodology. The
reason is that the Scrummethodology implies tight sprints, the definition of a scrummaster, and several other
mechanisms that will be very difficult to fulfill in the distributed and heterogeneous environment conformed
by the partners of the AMPERE project. Instead, Agile is a more flexible set of rules (which are the origin of
methodologies like Scrum), to ensure the efficiency and the quality of the development process and the final
product. These rules include: (a) iterative, incremental and evolutionary development, (b) efficient face-to-
face communication, (c) short feedback loop and adaptation cycle, and (d) focus on the quality. To follow
this methodology, all partners meet every week alternating meetings for discussing the advancements on the
software architecture components and communication, and the advancements on the use cases. Besides these
meetings, we also have ad hoc meetings for specific tasks when necessary.
Figure 6 includes the Gantt diagram detailing the integration process and plan. It is based on the tree-like
diagram for the integration of the different components already presented in D6.1 [3] (specifically, in Figure 5
of that deliverable).

10

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

Figure 6: Gantt diagram of the AMPERE project.
11

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

5 Conclusions

D6.2 extends D6.1 taking into consideration the opinion of the experts expressed in the consolidated interim
report, and the advancements made during Phase 2 of the project. At this point, all tools and systems for the
integration of the project are already defined and agreed by all partners.
During this phase, AMPERE partners have improved their interconnection significantly by way of weekly meet-
ings, allowing to keep their own developments aligned with the overall AMPERE objectives. During the next
phase, the tools defined for the integration of the different software components (defined in D6.1 [3]) will be
used during to ensure a smooth transition from isolation to integration.

12

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

List of Acronyms

API Application Program Interface
BG Business Goal
D Deliverable

HW Hardware
MS Milestone
NFR Non-Functional Requirement
PCC Predictive Cruise Control
SLG Synthetic Load Generator
SW Software
T Task

TDG Task Dependency Graph
TR Technical Requirement
WP Work Package

FURPS Functionality, Usability, Reliabilty, Performance, Supportability
SLG Synthetic Load Generator

ODAS Object Detection and Avoidance System

13

D6.2 - Refined AMPERE ecosystem interfaces and integration plan
Version 1.0

6 References

[1] AMPERE, “D1.1. System models requirements and use case selection,” 2020.
[2] ——, “D2.1. Model transformation requirements,” 2020.
[3] ——, “D6.1 AMPERE ecosystem interfaces and integration plan,” 2020.
[4] ——, “D6.3 Single-criterion AMPERE ecosystem,” 2021.
[5] ——, “D2.2. First release of the meta parallel programming abstraction and the single-criterion

performance-aware component,” 2021.
[6] Innovative Computing Laboratory, University of Tennessee, “Performance Application Programming In-

terface,” 2021, icl.utk.edu/papi/.
[7] Barcelona Supercomputing Center, “Extrae,” 2021, tools.bsc.es/extrae.
[8] ——, “Paraver,” 2021, tools.bsc.es/paraver.
[9] ——, “Paraver: trace file description,” 2001, tools.bsc.es/doc/1370.pdf.
[10] ——, “Mercurium compiler,” 2021, pm.bsc.es/mcxx.
[11] AMPERE, “D4.2. Independent runtime energy support, predictability, segregation and resilience mecha-

nisms,” 2021.
[12] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Grenning, J. Highsmith,

A. Hunt, R. Jeffries et al., “Manifesto for agile software development,” 2001.

14

icl.utk.edu/papi/
tools.bsc.es/extrae
tools.bsc.es/paraver
tools.bsc.es/doc/1370.pdf
pm.bsc.es/mcxx

	D6.2 page 1
	D6.2
	D6.2

