Ahsan Saeed, Daniel Mueller-Gritschneder, Falk Rehm, Arne Hamann, Dirk Ziegenbein, Ulf Schlichtmann, Andreas Gerstlauer. Learning based Memory Interference Prediction for Co-running Applications on Multi-Cores.
T. Cucinotta, L. Abeni. "Migrating Constant Bandwidth Servers on Multi-Cores," in Proceedings of the 29th International Conference on Real-Time Networks and Systems (RTNS 2021), April 7-9, 2021, Nantes, France.
Available software
- Open-source simulator: To to reproduce all the results shown in the paper, follow the instructions in the enclosed README.txt file.
Rehm, F., Dasari, D., Hamann, A., Pressler, M., Ziegenbein, D., Seitter, J., Sanudo, I., Capodieci, N., Bertogna, M. (2021). Performance modeling of heterogeneous HW platforms. Microprocessors and Microsystems, 87.
Luis Miguel Pinho, Sara Royuela Alcázar, and Eduardo Quiñones. Real-time Issues in the Ada Parallel Model with OpenMP.
F. Restuccia and A. Biondi, "Time-Predictable Acceleration of Deep Neural Networks on FPGA SoC Platforms," 2021 IEEE Real-Time Systems Symposium (RTSS), Dortmund, DE, 2021, pp. 441-454, doi: 10.1109/RTSS52674.2021.00047.
Eduardo Quiñones, Sara Royuela, Claudio Scordino, Paolo Gai, Luis Miguel Pinho, Luis Nogueira, Jan Rollo, Tommaso Cucinotta, Alessandro Biondi, Arne Hamann, Dirk Ziegenbein, Hadi Saoud, Romain Soulat, Björn Forsberg, Luca Benini, Gianluca Mando, Luigi Rucher. A Model-driven development framework for highly Parallel and EneRgy-Efficient computation supporting multi-criteria optimization.
Björn Forsberg. A Synergistic Approach to Predictable Compilation and Scheduling on Commodity Multi.
Björn Forsberg, Maxim Mattheeuws, Andreas Kurth, Andrea Marongiu, Luca Benini. A Synergistic Approach to Predictable Compilation and Scheduling on Commodity Multi-Cores.
Simone Economo, Sara Royuela, Eduard Ayguadé, Vicenç Beltran. A Toolchain to Verify the Parallelization of OmpSs-2 Applications.
Eduardo Quiñones, Sara Royuela, Arne Hamann, Dirk Ziegenbein, Björn Fosberg, Luca Benini, Claudio Scordino, Paolo Gai, Luis Miguel Pinho, Luis Nogueira, Tomasso Cucinotta, Alessandro Biondi, Jan Rollo, Hadi Saoud, Romain Soulat, Gianluca Mando, Luigi Rucher. AMPERE: A Model-driven development framework for highly Parallel and EneRgy-Efficient computation supporting multi-criteria optimisation.